dbo:abstract
|
- In mathematics, convex metric spaces are, intuitively, metric spaces with the property any "segment" joining two points in that space has other points in it besides the endpoints. Formally, consider a metric space (X, d) and let x and y be two points in X. A point z in X is said to be between x and y if all three points are distinct, and that is, the triangle inequality becomes an equality. A convex metric space is a metric space (X, d) such that, for any two distinct points x and y in X, there exists a third point z in X lying between x and y. Metric convexity:
* does not imply convexity in the usual sense for subsets of Euclidean space (see the example of the rational numbers)
* nor does it imply path-connectedness (see the example of the rational numbers)
* nor does it imply geodesic convexity for Riemannian manifolds (consider, for example, the Euclidean plane with a closed disc removed). (en)
- In matematica, gli spazi metrici convessi sono, intuitivamente, spazi metrici con la proprietà che qualsiasi "segmento" che unisce due punti in quello spazio ha altri punti al suo interno oltre ai punti estremi. Formalmente, si consideri uno spazio metrico (X,d) e siano x e y due punti in X. Si dice che un punto z in X è tra x e y se tutti e tre i punti sono distinti, e cioè, la disuguaglianza triangolare diventa un'uguaglianza. Uno spazio metrico convesso è uno spazio metrico (X,d) tale che, per due qualsiasi punti distinti x e y in X, esiste un terzo punto z in X che giace tra x e y. La convessità metrica:
* non implica la convessità nel senso usuale per i sottoinsiemi dello spazio euclideo (si veda l'esempio dei numeri razionali)
* non implica la connessione per traiettorie (si veda di nuovo l'esempio dei numeri razionali)
* non implica la per le varietà riemanniane (si consideri, ad esempio, il piano euclideo con un disco chiuso rimosso). (it)
- Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов. (ru)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5418 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов. (ru)
- In mathematics, convex metric spaces are, intuitively, metric spaces with the property any "segment" joining two points in that space has other points in it besides the endpoints. Formally, consider a metric space (X, d) and let x and y be two points in X. A point z in X is said to be between x and y if all three points are distinct, and that is, the triangle inequality becomes an equality. A convex metric space is a metric space (X, d) such that, for any two distinct points x and y in X, there exists a third point z in X lying between x and y. Metric convexity: (en)
- In matematica, gli spazi metrici convessi sono, intuitivamente, spazi metrici con la proprietà che qualsiasi "segmento" che unisce due punti in quello spazio ha altri punti al suo interno oltre ai punti estremi. Formalmente, si consideri uno spazio metrico (X,d) e siano x e y due punti in X. Si dice che un punto z in X è tra x e y se tutti e tre i punti sono distinti, e cioè, la disuguaglianza triangolare diventa un'uguaglianza. Uno spazio metrico convesso è uno spazio metrico (X,d) tale che, per due qualsiasi punti distinti x e y in X, esiste un terzo punto z in X che giace tra x e y. (it)
|
rdfs:label
|
- Convex metric space (en)
- Spazio convesso (it)
- Выпуклое метрическое пространство (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |