An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In set theory, a code for a hereditarily countable set is a set such that there is an isomorphism between (ω,E) and (X,) where X is the transitive closure of {x}. If X is finite (with cardinality n), then use n×n instead of ω×ω and (n,E) instead of (ω,E). Codes are useful in constructing mice.

Property Value
dbo:abstract
  • In set theory, a code for a hereditarily countable set is a set such that there is an isomorphism between (ω,E) and (X,) where X is the transitive closure of {x}. If X is finite (with cardinality n), then use n×n instead of ω×ω and (n,E) instead of (ω,E). According to the axiom of extensionality, the identity of a set is determined by its elements. And since those elements are also sets, their identities are determined by their elements, etc.. So if one knows the element relation restricted to X, then one knows what x is. (We use the transitive closure of {x} rather than of x itself to avoid confusing the elements of x with elements of its elements or whatever.) A code includes that information identifying x and also information about the particular injection from X into ω which was used to create E. The extra information about the injection is non-essential, so there are many codes for the same set which are equally useful. So codes are a way of mapping into the powerset of ω×ω. Using a pairing function on ω (such as (n,k) goes to (n2+2·n·k+k2+n+3·k)/2), we can map the powerset of ω×ω into the powerset of ω. And we can map the powerset of ω into the Cantor set, a subset of the real numbers. So statements about can be converted into statements about the reals. Therefore, Codes are useful in constructing mice. (en)
dbo:wikiPageID
  • 5139210 (xsd:integer)
dbo:wikiPageLength
  • 2075 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1070150568 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In set theory, a code for a hereditarily countable set is a set such that there is an isomorphism between (ω,E) and (X,) where X is the transitive closure of {x}. If X is finite (with cardinality n), then use n×n instead of ω×ω and (n,E) instead of (ω,E). Codes are useful in constructing mice. (en)
rdfs:label
  • Code (set theory) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License