An Entity of Type: company, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

The centrifugal micro-fluidic biochip or centrifugal micro-fluidic biodisk is a type of lab-on-a-chip technology, also known as lab-on-a-disc, that can be used to integrate processes such as separating, mixing, reaction and detecting molecules of nano-size in a single piece of platform, including a compact disk or DVD. This type of micro-fluidic biochip is based upon the principle of microfluidics; to take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal force and Coriolis effect to distribute fluids about the disks in a highly parallel order.

Property Value
dbo:abstract
  • The centrifugal micro-fluidic biochip or centrifugal micro-fluidic biodisk is a type of lab-on-a-chip technology, also known as lab-on-a-disc, that can be used to integrate processes such as separating, mixing, reaction and detecting molecules of nano-size in a single piece of platform, including a compact disk or DVD. This type of micro-fluidic biochip is based upon the principle of microfluidics; to take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal force and Coriolis effect to distribute fluids about the disks in a highly parallel order. This biodisk is an integration of multiple technologies in different areas. The designer must be familiar with the process of biology testing before designing the detailed micro-structures in the compact disk. Some basic element components such as valves, mixing units, and separating units should all be used to complete the full testing process. The most basic principles applied in such micro-fluidic structures are centrifugal force, coriolis effect, and surface tension. The micromachining techniques, including patterning, photolithography, and etching should all be used as long as the design is verified. Once the testing process is successful in the biodisk, the complex detection technique is started. There are many methods proposed by scientists in this area. The most popular method is immunoassay which is widely use in the testing of biology. The final step is receiving data from the biodisk by means of a CD drive and modifying either software or hardware that can achieve this function. A popular method is reading data from the biodisk using a common CD drive with some developed software, which contains the advantage of being low on cost. Once the centrifugal micro-fluidic biochip is developed well enough to be manufactured on a large scale, it will cause a wide effect on the industry as well as medical care, especially in developing countries, where high-precision equipment is not available. People in developed countries who are willing to do such regular home-care detections can also benefit from this new technology. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 29503316 (xsd:integer)
dbo:wikiPageLength
  • 31280 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1094325402 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The centrifugal micro-fluidic biochip or centrifugal micro-fluidic biodisk is a type of lab-on-a-chip technology, also known as lab-on-a-disc, that can be used to integrate processes such as separating, mixing, reaction and detecting molecules of nano-size in a single piece of platform, including a compact disk or DVD. This type of micro-fluidic biochip is based upon the principle of microfluidics; to take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal force and Coriolis effect to distribute fluids about the disks in a highly parallel order. (en)
rdfs:label
  • Centrifugal micro-fluidic biochip (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License