dbo:abstract
|
- In mathematics, the Babuška–Lax–Milgram theorem is a generalization of the famous Lax–Milgram theorem, which gives conditions under which a bilinear form can be "inverted" to show the existence and uniqueness of a weak solution to a given boundary value problem. The result is named after the mathematicians Ivo Babuška, Peter Lax and Arthur Milgram. (en)
- 数学においてバフスカ=ラックス=ミルグラムの定理(バフスカ=ラックス=ミルグラムのていり、英: Babuška–Lax–Milgram theorem)は、与えられた境界値問題の弱解の存在と一意性を示すために双線型形式が「可逆」であるための条件を与える、有名なラックス=ミルグラムの定理の一般化である。数学者の、ピーター・ラックスおよびの名にちなむ。 (ja)
- In matematica, il teorema di Babuška-Lax-Milgram è un risultato di analisi funzionale che generalizza il lemma di Lax-Milgram e fornisce le condizioni per cui una forma bilineare può essere "invertita" per mostrare l'esistenza e l'unicità di una soluzione debole per determinate condizioni al contorno. Il teorema ha rilevanti applicazioni nella teoria delle equazioni differenziali alle derivate parziali, e anche in analisi numerica per lo studio del metodo degli elementi finiti. (it)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5585 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:first
| |
dbp:id
| |
dbp:last
| |
dbp:title
|
- Babuška–Lax–Milgram theorem (en)
|
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the Babuška–Lax–Milgram theorem is a generalization of the famous Lax–Milgram theorem, which gives conditions under which a bilinear form can be "inverted" to show the existence and uniqueness of a weak solution to a given boundary value problem. The result is named after the mathematicians Ivo Babuška, Peter Lax and Arthur Milgram. (en)
- 数学においてバフスカ=ラックス=ミルグラムの定理(バフスカ=ラックス=ミルグラムのていり、英: Babuška–Lax–Milgram theorem)は、与えられた境界値問題の弱解の存在と一意性を示すために双線型形式が「可逆」であるための条件を与える、有名なラックス=ミルグラムの定理の一般化である。数学者の、ピーター・ラックスおよびの名にちなむ。 (ja)
- In matematica, il teorema di Babuška-Lax-Milgram è un risultato di analisi funzionale che generalizza il lemma di Lax-Milgram e fornisce le condizioni per cui una forma bilineare può essere "invertita" per mostrare l'esistenza e l'unicità di una soluzione debole per determinate condizioni al contorno. Il teorema ha rilevanti applicazioni nella teoria delle equazioni differenziali alle derivate parziali, e anche in analisi numerica per lo studio del metodo degli elementi finiti. (it)
|
rdfs:label
|
- Babuška–Lax–Milgram theorem (en)
- Teorema di Babuška-Lax-Milgram (it)
- バフスカ=ラックス=ミルグラムの定理 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |