An Entity of Type: television episode, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In the historical study of mathematics, an apotome is a line segment formed from a longer line segment by breaking it into two parts, one of which is commensurable only in power to the whole; the other part is the apotome. In this definition, two line segments are said to be "commensurable only in power" when the ratio of their lengths is an irrational number but the ratio of their squared lengths is rational.

Property Value
dbo:abstract
  • المنفصل عند المهندسين يطلق على ما بقي بعد استثناء الخط الأصغر من خطي ذي الاسمين من أطوله، فإن ذوات الاسمين كل واحد منها خطان متصلان مختلفان بالطول والقصر، فإذا استثني الأقصر من الأطول فما بقي سيسمى منفصلا، لكنه باسم متصله، أي إن كان متصله ذا الاسمين الأول فهو المنفصل الأول وإن كان متصله ذا الاسمين الثاني فهو المنفصل الثاني. مثلا ثلاثة وجذر ثمانية ذو الاسمين الأول وثلاثة إلا جذر ثمانية منفصل أول وجذر ثمانية وأربعين ذو الاسمين الثاني فجذر ثمانية وأربعين إلا ستة منفصل ثان. (ar)
  • In the historical study of mathematics, an apotome is a line segment formed from a longer line segment by breaking it into two parts, one of which is commensurable only in power to the whole; the other part is the apotome. In this definition, two line segments are said to be "commensurable only in power" when the ratio of their lengths is an irrational number but the ratio of their squared lengths is rational. Translated into modern algebraic language, an apotome can be interpreted as a quadratic irrational number formed by subtracting one square root of a rational number from another.This concept of the apotome appears in Euclid's Elements beginning in book X, where Euclid defines two special kinds of apotomes. In an apotome of the first kind, the whole is rational, while in an apotome of the second kind, the part subtracted from it is rational; both kinds of apotomes also satisfy an additional condition. Euclid Proposition XIII.6 states that, if a rational line segment is split into two pieces in the golden ratio, then both pieces may be represented as apotomes. (en)
dbo:wikiPageID
  • 3785849 (xsd:integer)
dbo:wikiPageLength
  • 1874 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 980965512 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • المنفصل عند المهندسين يطلق على ما بقي بعد استثناء الخط الأصغر من خطي ذي الاسمين من أطوله، فإن ذوات الاسمين كل واحد منها خطان متصلان مختلفان بالطول والقصر، فإذا استثني الأقصر من الأطول فما بقي سيسمى منفصلا، لكنه باسم متصله، أي إن كان متصله ذا الاسمين الأول فهو المنفصل الأول وإن كان متصله ذا الاسمين الثاني فهو المنفصل الثاني. مثلا ثلاثة وجذر ثمانية ذو الاسمين الأول وثلاثة إلا جذر ثمانية منفصل أول وجذر ثمانية وأربعين ذو الاسمين الثاني فجذر ثمانية وأربعين إلا ستة منفصل ثان. (ar)
  • In the historical study of mathematics, an apotome is a line segment formed from a longer line segment by breaking it into two parts, one of which is commensurable only in power to the whole; the other part is the apotome. In this definition, two line segments are said to be "commensurable only in power" when the ratio of their lengths is an irrational number but the ratio of their squared lengths is rational. (en)
rdfs:label
  • منفصل (خط) (ar)
  • Apotome (mathematics) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License