dbo:abstract
|
- In thermodynamics, an adiabatic wall between two thermodynamic systems does not allow heat or chemical substances to pass across it, in other words there is no heat transfer nor mass transfer. In theoretical investigations, it is sometimes assumed that one of the two systems is the surroundings of the other. Then it is assumed that the work transferred is reversible within the surroundings, but in thermodynamics it is not assumed that the work transferred is reversible within the system. The assumption of reversibility in the surroundings has the consequence that the quantity of work transferred is well defined by macroscopic variables in the surroundings. Accordingly, the surroundings are sometimes said to have a reversible work reservoir. Along with the idea of an adiabatic wall is that of an adiabatic enclosure. It is easily possible that a system has some boundary walls that are adiabatic and others that are not. When some are not adiabatic, then the system is not adiabatically enclosed, though adiabatic transfer of energy as work can occur across the adiabatic walls. The adiabatic enclosure is important because, according to one widely cited author, Herbert Callen, "An essential prerequisite for the measurability of energy is the existence of walls that do not permit the transfer of energy in the form of heat." In thermodynamics, it is customary to assume a priori the physical existence of adiabatic enclosures, though it is not customary to label this assumption separately as an axiom or numbered law. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 12253 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:date
| |
dbp:url
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In thermodynamics, an adiabatic wall between two thermodynamic systems does not allow heat or chemical substances to pass across it, in other words there is no heat transfer nor mass transfer. In theoretical investigations, it is sometimes assumed that one of the two systems is the surroundings of the other. Then it is assumed that the work transferred is reversible within the surroundings, but in thermodynamics it is not assumed that the work transferred is reversible within the system. The assumption of reversibility in the surroundings has the consequence that the quantity of work transferred is well defined by macroscopic variables in the surroundings. Accordingly, the surroundings are sometimes said to have a reversible work reservoir. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |