About: Inverse function theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInverse_function_theorem

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function.In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for complex holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth.

AttributesValues
rdf:type
rdfs:label
  • Inverse function theorem (en)
  • Teorema de la funció inversa (ca)
  • Věta o inverzní funkci (cs)
  • Satz von der Umkehrabbildung (de)
  • Teorema de la función inversa (es)
  • Théorème d'inversion locale (fr)
  • Teorema della funzione inversa (it)
  • 역함수 정리 (ko)
  • 逆函数定理 (ja)
  • Teorema da função inversa (pt)
  • Теорема об обратной функции (ru)
  • Inversa funktionssatsen (sv)
  • Теорема про обернену функцію (uk)
  • 反函数定理 (zh)
rdfs:comment
  • Věta o inverzní funkci v diferenciálním počtu v matematice je postačující podmínka, aby k funkci existovalo inverzní zobrazení v okolí nějakého bodu svého definičního oboru: musí existovat derivace této funkce, která je spojitá a v daném bodě nenulová. Věta také udává vzorec pro derivaci inverzní funkce. V lze tuto větu zobecnit na jakoukoli spojitě diferencovatelnou , jejíž Jacobián je nenulový v nějakém bodě jejího definičního oboru, což dává vzorec pro Jacobiho matici inverzní funkce. Existují také verze věty o inverzní funkci pro holomorfní funkce v oboru komplexních čísel, pro derivovatelná zobrazení mezi varietami, pro derivovatelná funkce mezi Banachovými prostory atd. (cs)
  • En la rama de la matemática denominada análisis matemático, el teorema de la función inversa proporciona las condiciones suficientes para que una aplicación (función) sea invertible localmente en un entorno de un punto p en términos de su derivada en dicho punto. Técnicamente es un teorema de existencia local de la función inversa. El teorema puede enunciarse para aplicaciones en Rn o se puede generalizar a variedades diferenciables o espacios de Banach. (es)
  • 数学、特に微分学において逆函数定理(ぎゃくかんすうていり、英: inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の C1 級ベクトル値関数へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。 (ja)
  • In matematica, il teorema della funzione inversa dà condizioni sufficienti affinché una funzione possegga una inversa locale, cioè affinché essa sia invertibile in un appropriato intorno di un punto del suo dominio. Il teorema può essere enunciato per funzioni reali o vettoriali e generalizzato per spazi di Banach e varietà differenziabili. (it)
  • 다변수 미적분학에서 역함수 정리(逆函數定理, 영어: inverse function theorem)는 주어진 함수가 국소적으로 충분히 매끄러운 역함수를 가질 충분 조건을 제시하는 정리이다. (ko)
  • Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции. Теорема обобщается на вектор-функции. Есть также варианты теоремы об обратной функции для голоморфных функций, для гладких отображений между многообразиями, для гладких функций между Банаховыми пространствами. (ru)
  • Inversa funktionssatsen är en matematisk sats inom differentialkalkyl. Satsen ger tillräckliga villkor för att en funktion ska vara inverterbar i en omgivning till en given punkt och en formel för beräkning av derivatan av den inversa funktionen. (sv)
  • 在数学中,反函数定理给出了向量值函数在含有定义域中一点的开区域内具有反函数的充分条件。该定理还说明了反函数的全导数存在,并给出了一个公式。反函数定理可以推广到定义在流形上、以及定义在无穷维巴拿赫空间(和)上的映射。大致地说,C1函数F在点p可逆,如果它的雅可比矩阵JF(p)是可逆的。 (zh)
  • En matemàtiques, el teorema de la funció inversa és un resultat de geometria diferencial. Indica que si és una funció f és en un punt a i aquesta diferencial és contínua i també ho és la seva recíproca, llavors f és localment inversible i la seva inversa és diferenciable. Per demostrar-lo es fa servir una versió simple del teorema del punt fix. Permet establir el resultat en diversos casos, un espai vectorial real de dimensió finita, un espai de Banach o inclús una varietat diferencial. Hi ha una versió més forta el . (ca)
  • In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function.In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for complex holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth. (en)
  • En mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange. Il est aussi utilisé pour démontrer le théorème du redressement. (fr)
  • O teorema da função inversa é um importante resultado da análise real que estabelece a existência, ainda que localmente, de um função inversa para uma aplicação continuamente diferenciável. E embora este teorema possua equivalência com o Teorema da função implícita, cujas ideias apereceram inicialmente nos escritos de Isaac Newton, Joseph Louis Lagrange (1736-1813) foi o matemático que apresentou um resultado que essencialmente é uma versão do Teorema da Função Inversa. Além da garantia da inversibilidade de aplicações, podemos utilizar este resultado para demostrar o Teorema fundamental da álgebra e resultados envolvendo superfícies regulares, no ramo da Geometria diferencial. Por outro lado, ainda existem versões generalizadas para este resultado, envolvendo funções holomorfas e aplicaç (pt)
  • У математиці, особливо в диференціальному численні, теорема про обернену функцію дає достатню умову для того, щоб функція була оберненою в околі точки з її області визначення: а саме, її похідна неперервна і не дорівнює нулю в точці. Теорема також дає формулу для похідної оберненої функції. У аналізі функцій багатьох змінних цю теорему можна узагальнити для будь-якої неперервно диференційовної, векторзначної функції для якої визначник Якобі (якобіан) відмінний від нуля в точці її області визначення, що дає формулу для оберненої матриці Якобі. Також існують версії теореми про обернену функцію для комплексних голоморфних функцій, для диференційних відображень між многовидами та диференційовних функцій між банаховими просторами, тощо. (uk)
name
  • Lemma (en)
  • Theorem (en)
  • Proposition (en)
  • Inverse function theorem (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Inv-Fun-Thm-3.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 40 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software