About: Hadamard space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPropertiesOfTopologicalSpaces, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHadamard_space

In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces. A Hadamard space is defined to be a nonempty complete metric space such that, given any points and there exists a point such that for every point The point is then the midpoint of and

AttributesValues
rdf:type
rdfs:label
  • Hadamard-Raum (de)
  • Hadamard space (en)
  • Пространство Адамара (ru)
rdfs:comment
  • Ein Hadamard-Raum ist ein mathematisches Objekt aus der Geometrie metrischer Räume. Benannt ist er nach dem Mathematiker Jacques Hadamard. (de)
  • Пространства Адамара (или полное CAT(0) пространство с внутренней метрикой) — нелинейное обобщение гильбертовых пространств,частный случай пространства Александрова с кривизной ограниченной сверху. Пространства названы в честь Жака Адамара. (ru)
  • In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces. A Hadamard space is defined to be a nonempty complete metric space such that, given any points and there exists a point such that for every point The point is then the midpoint of and (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/End_of_universe.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Ein Hadamard-Raum ist ein mathematisches Objekt aus der Geometrie metrischer Räume. Benannt ist er nach dem Mathematiker Jacques Hadamard. (de)
  • In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces. A Hadamard space is defined to be a nonempty complete metric space such that, given any points and there exists a point such that for every point The point is then the midpoint of and In a Hilbert space, the above inequality is equality (with ), and in general an Hadamard space is said to be flat if the above inequality is equality. A flat Hadamard space is isomorphic to a closed convex subset of a Hilbert space. In particular, a normed space is an Hadamard space if and only if it is a Hilbert space. The geometry of Hadamard spaces resembles that of Hilbert spaces, making it a natural setting for the study of rigidity theorems. In a Hadamard space, any two points can be joined by a unique geodesic between them; in particular, it is contractible. Quite generally, if is a bounded subset of a metric space, then the center of the closed ball of the minimum radius containing it is called the of Every bounded subset of a Hadamard space is contained in the smallest closed ball (which is the same as the closure of its convex hull). If is the group of isometries of a Hadamard space leaving invariant then fixes the circumcenter of (Bruhat–Tits fixed point theorem). The basic result for a non-positively curved manifold is the Cartan–Hadamard theorem. The analog holds for a Hadamard space: a complete, connected metric space which is locally isometric to a Hadamard space has an Hadamard space as its universal cover. Its variant applies for non-positively curved orbifolds. (cf. Lurie.) Examples of Hadamard spaces are Hilbert spaces, the Poincaré disc, complete metric trees (for example, complete Bruhat–Tits building), with and and Hadamard manifolds, that is, complete simply-connected Riemannian manifolds of nonpositive sectional curvature. Important examples of Hadamard manifolds are simply connected nonpositively curved symmetric spaces. Applications of Hadamard spaces are not restricted to geometry. In 1998, Dmitri Burago and used CAT(0) geometry to solve a problem in dynamical billiards: in a gas of hard balls, is there a uniform bound on the number of collisions? The solution begins by constructing a configuration space for the dynamical system, obtained by joining together copies of corresponding billiard table, which turns out to be an Hadamard space. (en)
  • Пространства Адамара (или полное CAT(0) пространство с внутренней метрикой) — нелинейное обобщение гильбертовых пространств,частный случай пространства Александрова с кривизной ограниченной сверху. Пространства названы в честь Жака Адамара. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 40 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software