This HTML5 document contains 25 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hankel_transform
dbo:wikiPageWikiLink
dbr:Y_and_H_transforms
Subject Item
dbr:Y_and_H_transforms
rdfs:label
Y and H transforms
rdfs:comment
In mathematics, the Y transforms and H transforms are complementary pairs of integral transforms involving, respectively, the Neumann function (Bessel function of the second kind) Yν of order ν and the Struve function Hν of the same order. For a given function f(r), the Y-transform of order ν is given by The inverse of above is the H-transform of the same order; for a given function F(k), the H-transform of order ν is given by
dcterms:subject
dbc:Integral_transforms
dbo:wikiPageID
46183205
dbo:wikiPageRevisionID
891177014
dbo:wikiPageWikiLink
dbr:Struve_function dbr:Bessel_function dbr:Axial_symmetry dbr:Bateman_Manuscript_Project dbr:Hankel_transform dbr:Integral_transform dbr:Neumann_function dbc:Integral_transforms
owl:sameAs
wikidata:Q25303833 freebase:m.0130rvqb n15:2Nkjr
dbp:wikiPageUsesTemplate
dbt:Cite_journal dbt:Mathcal dbt:Math
dbo:abstract
In mathematics, the Y transforms and H transforms are complementary pairs of integral transforms involving, respectively, the Neumann function (Bessel function of the second kind) Yν of order ν and the Struve function Hν of the same order. For a given function f(r), the Y-transform of order ν is given by The inverse of above is the H-transform of the same order; for a given function F(k), the H-transform of order ν is given by These transforms are closely related to the Hankel transform, as both involve Bessel functions.In problems of mathematical physics and applied mathematics, the Hankel, Y, H transforms all may appear in problems having axial symmetry.Hankel transforms are however much more commonly seen due to their connection with the 2-dimensional Fourier transform. The Y, H transforms appear in situations with singular behaviour on the axis of symmetry (Rooney).
prov:wasDerivedFrom
wikipedia-en:Y_and_H_transforms?oldid=891177014&ns=0
dbo:wikiPageLength
2540
foaf:isPrimaryTopicOf
wikipedia-en:Y_and_H_transforms
Subject Item
wikipedia-en:Y_and_H_transforms
foaf:primaryTopic
dbr:Y_and_H_transforms