This HTML5 document contains 49 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
n17https://eudml.org/doc/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Emmy_Noether
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Étale_cohomology
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Algebraic_curve
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Brauer_group
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Quasi-algebraically_closed_field
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Ring_(mathematics)
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Chiungtze_C._Tsen
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:Tsen's_theorem
rdf:type
yago:Communication100033020 yago:Proposition106750804 yago:Message106598915 yago:Abstraction100002137 yago:WikicatTheoremsInAlgebraicGeometry yago:Statement106722453 yago:Theorem106752293
rdfs:label
Tsen's theorem
rdfs:comment
In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes, and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve. The theorem was published by Chiungtze C. Tsen in 1933.
dcterms:subject
dbc:Theorems_in_algebraic_geometry
dbo:wikiPageID
10129446
dbo:wikiPageRevisionID
1058789589
dbo:wikiPageWikiLink
dbr:Étale_cohomology dbr:Rocky_Mountain_Journal_of_Mathematics dbr:Brauer_group dbr:Quasi-algebraically_closed dbr:Algebraic_curve dbr:Chiungtze_C._Tsen dbc:Theorems_in_algebraic_geometry dbr:Algebraically_closed_field dbr:Springer-Verlag dbr:Galois_cohomology dbr:Annals_of_Mathematics dbr:Tsen_rank
dbo:wikiPageExternalLink
n17:59436
owl:sameAs
n7:4wUsr freebase:m.02q2rsc wikidata:Q7849521 yago-res:Tsen's_theorem
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Algebraic-geometry-stub dbt:Reflist
dbo:abstract
In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes, and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve. The theorem was published by Chiungtze C. Tsen in 1933.
prov:wasDerivedFrom
wikipedia-en:Tsen's_theorem?oldid=1058789589&ns=0
dbo:wikiPageLength
2181
foaf:isPrimaryTopicOf
wikipedia-en:Tsen's_theorem
Subject Item
dbr:Tsen_(disambiguation)
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
dbo:wikiPageDisambiguates
dbr:Tsen's_theorem
Subject Item
dbr:Tsen_rank
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
dbr:U-invariant
dbo:wikiPageWikiLink
dbr:Tsen's_theorem
Subject Item
wikipedia-en:Tsen's_theorem
foaf:primaryTopic
dbr:Tsen's_theorem