This HTML5 document contains 62 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
n11http://mathunion.org/ICM/ICM1962.1/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://web.archive.org/web/20110717144510/http:/mathunion.org/ICM/ICM1962.1/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
n20http://www.numdam.org/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:John_Tate_(mathematician)
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Decisional_Diffie–Hellman_assumption
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Elliptic-curve_cryptography
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Elliptic_divisibility_sequence
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Commitment_scheme
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Computational_hardness_assumption
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Identity-based_encryption
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Tate_pairing
rdf:type
yago:Line113863771 yago:WikicatEllipticCurves yago:Shape100027807 yago:Curve113867641 yago:Abstraction100002137 yago:Attribute100024264
rdfs:label
Accouplement de Tate Tate配对 Tate pairing
rdfs:comment
在數學中,Tate配對是針對 椭圆曲线 或 的幾種雙線性配對之一,通常基於局部域或有限域。理論基礎由 (, ) 引入,後由 ) 擴展的 Tate 二元配對。 ) 將有限域上的 Tate 配對應用於密碼學。 In mathematics, Tate pairing is any of several closely related bilinear pairings involving elliptic curves or abelian varieties, usually over local or finite fields, based on the Tate duality pairings introduced by Tate and extended by . applied the Tate pairing over finite fields to cryptography.
dcterms:subject
dbc:Pairing-based_cryptography dbc:Elliptic_curves dbc:Elliptic_curve_cryptography
dbo:wikiPageID
34128228
dbo:wikiPageRevisionID
1098479912
dbo:wikiPageWikiLink
dbc:Elliptic_curves dbr:Elliptic_curve dbr:Inventiones_Mathematicae dbr:Pairing-based_cryptography dbr:Local_field dbr:Tate_duality dbc:Elliptic_curve_cryptography dbr:Mathematics_of_Computation dbr:Weil_pairing dbc:Pairing-based_cryptography dbr:Finite_field dbr:Abelian_varieties
dbo:wikiPageExternalLink
n10: n11: n20:item%3Fid=SB_1956-1958__4__265_0
owl:sameAs
dbpedia-zh:Tate配对 dbpedia-fr:Accouplement_de_Tate wikidata:Q7687982 n18:4vY5D yago-res:Tate_pairing freebase:m.0hr1wy4
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Harvs dbt:Crypto-stub dbt:For dbt:Harvtxt
dbp:authorlink
John Tate
dbp:last
Tate
dbp:year
1963 1958
dbo:abstract
在數學中,Tate配對是針對 椭圆曲线 或 的幾種雙線性配對之一,通常基於局部域或有限域。理論基礎由 (, ) 引入,後由 ) 擴展的 Tate 二元配對。 ) 將有限域上的 Tate 配對應用於密碼學。 In mathematics, Tate pairing is any of several closely related bilinear pairings involving elliptic curves or abelian varieties, usually over local or finite fields, based on the Tate duality pairings introduced by Tate and extended by . applied the Tate pairing over finite fields to cryptography.
prov:wasDerivedFrom
wikipedia-en:Tate_pairing?oldid=1098479912&ns=0
dbo:wikiPageLength
2217
foaf:isPrimaryTopicOf
wikipedia-en:Tate_pairing
Subject Item
dbr:Weil_pairing
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Tate_duality
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
dbr:Pairing-based_cryptography
dbo:wikiPageWikiLink
dbr:Tate_pairing
Subject Item
wikipedia-en:Tate_pairing
foaf:primaryTopic
dbr:Tate_pairing