This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n15http://dedekind.mit.edu/~rstan/pubs/pubfiles/

Statements

Subject Item
dbr:Schur_polynomial
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
Subject Item
dbr:Stanley_symmetric_function
rdf:type
yago:Function113783816 yago:Polynomial105861855 yago:WikicatSymmetricFunctions yago:MathematicalRelation113783581 yago:Relation100031921 yago:Abstraction100002137 yago:WikicatPolynomials
rdfs:label
Stanley symmetric function
rdfs:comment
In mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric functions introduced by Richard Stanley in his study of the symmetric group of permutations. reduced decompositions. (Here denotes the binomial coefficient n(n − 1)/2 and ! denotes the factorial.)
dct:subject
dbc:Polynomials dbc:Symmetric_functions
dbo:wikiPageID
31980740
dbo:wikiPageRevisionID
1112372655
dbo:wikiPageWikiLink
dbr:Basis_(linear_algebra) dbr:Inversion_(discrete_mathematics) dbr:Binomial_coefficient dbr:Transposition_(mathematics) dbr:Ring_of_symmetric_functions dbr:Degree_of_a_polynomial dbr:Algebraic_combinatorics dbc:Polynomials dbr:Symmetric_group dbr:Symmetric_polynomials dbr:Non-negative dbr:Integer dbr:Homogeneous_polynomial dbc:Symmetric_functions dbr:Permutation dbr:Mathematics dbr:One-line_notation dbr:Factorial dbr:Quasisymmetric_function dbr:Schubert_polynomials dbr:Schur_polynomials
dbo:wikiPageExternalLink
n15:56.pdf
owl:sameAs
freebase:m.0gvrt23 yago-res:Stanley_symmetric_function n17:4vdxV wikidata:Q7600073
dbp:wikiPageUsesTemplate
dbt:Harvs dbt:Citation
dbp:authorlink
Richard P. Stanley
dbp:first
Richard
dbp:last
Stanley
dbp:year
1984
dbo:abstract
In mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric functions introduced by Richard Stanley in his study of the symmetric group of permutations. Formally, the Stanley symmetric function Fw(x1, x2, ...) indexed by a permutation w is defined as a sum of certain fundamental quasisymmetric functions. Each summand corresponds to a reduced decomposition of w, that is, to a way of writing w as a product of a minimal possible number of adjacent transpositions. They were introduced in the course of Stanley's enumeration of the reduced decompositions of permutations, and in particular his proof that the permutation w0 = n(n − 1)...21 (written here in one-line notation) has exactly reduced decompositions. (Here denotes the binomial coefficient n(n − 1)/2 and ! denotes the factorial.)
prov:wasDerivedFrom
wikipedia-en:Stanley_symmetric_function?oldid=1112372655&ns=0
dbo:wikiPageLength
2570
foaf:isPrimaryTopicOf
wikipedia-en:Stanley_symmetric_function
Subject Item
dbr:Quasisymmetric_function
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
Subject Item
dbr:Symmetric_polynomial
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
Subject Item
dbr:Schubert_polynomial
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
Subject Item
dbr:Stanley_symmetric_functions
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
dbo:wikiPageRedirects
dbr:Stanley_symmetric_function
Subject Item
dbr:Stanley_symmetric_polynomial
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
dbo:wikiPageRedirects
dbr:Stanley_symmetric_function
Subject Item
dbr:Stanley_symmetric_polynomials
dbo:wikiPageWikiLink
dbr:Stanley_symmetric_function
dbo:wikiPageRedirects
dbr:Stanley_symmetric_function
Subject Item
wikipedia-en:Stanley_symmetric_function
foaf:primaryTopic
dbr:Stanley_symmetric_function