This HTML5 document contains 65 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n16http://www.photonics.umd.edu/software/ssprop/
n13http://
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n15http://www.optics.rochester.edu/workgroups/agrawal/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
n23http://www.mathworks.com/matlabcentral/fileexchange/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:SSFM
dbo:wikiPageWikiLink
dbr:Split-step_method
dbo:wikiPageRedirects
dbr:Split-step_method
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Split-step_method
Subject Item
dbr:Split-step_method
rdf:type
yago:Message106598915 yago:Communication100033020 dbo:Software yago:MathematicalStatement106732169 yago:Abstraction100002137 yago:DifferentialEquation106670521 yago:Statement106722453 yago:Equation106669864 yago:WikicatNumericalDifferentialEquations
rdfs:label
Split-Operator-Methode Split-step method
rdfs:comment
In numerical analysis, the split-step (Fourier) method is a pseudo-spectral numerical method used to solve nonlinear partial differential equations like the nonlinear Schrödinger equation. The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately (see below). Second, it is necessary to Fourier transform back and forth because the linear step is made in the frequency domain while the nonlinear step is made in the time domain. Die Split-Operator-Methode (SOP) ist ein numerisches Verfahren mit dem die zeitabhängige Schrödingergleichung gelöst werden kann. Bei der Methode wird der Hamiltonoperator in einen kinetischen Teil (Impulsteil) und in einen Potentialteil gespalten und einzeln angewendet. Dabei wird von der schnellen Fourier-Transformation (FFT) Gebrauch gemacht, um zwischen Impulsraum und Ortsraum zu wechseln.
dct:subject
dbc:Fiber_optics dbc:Numerical_differential_equations
dbo:wikiPageID
5120183
dbo:wikiPageRevisionID
1117712270
dbo:wikiPageWikiLink
dbc:Fiber_optics dbr:Nonlinear_Schrödinger_equation dbr:Lugiato–Lefever_equation dbr:Frequency_domain dbr:Numerical_analysis dbr:Finite_difference_method dbc:Numerical_differential_equations dbr:Partial_differential_equation dbr:Inverse_Fourier_transform dbr:Fast_Fourier_transform dbr:Fourier_transform dbr:Soliton dbr:Optical_microresonators dbr:Kerr_frequency_comb dbr:Time_domain dbr:Pseudo-spectral_method dbr:Algorithm
dbo:wikiPageExternalLink
n13:www.freeopticsproject.org n15:grouphomepage.php%3Fpageid=software n16: n23:24016 n13:www.fiberdesk.com
owl:sameAs
n11:2BZAh dbpedia-de:Split-Operator-Methode freebase:m.0d3ljk wikidata:Q2311789 yago-res:Split-step_method
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Numerical_PDE
dbo:abstract
In numerical analysis, the split-step (Fourier) method is a pseudo-spectral numerical method used to solve nonlinear partial differential equations like the nonlinear Schrödinger equation. The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately (see below). Second, it is necessary to Fourier transform back and forth because the linear step is made in the frequency domain while the nonlinear step is made in the time domain. An example of usage of this method is in the field of light pulse propagation in optical fibers, where the interaction of linear and nonlinear mechanisms makes it difficult to find general analytical solutions. However, the split-step method provides a numerical solution to the problem. Another application of the split-step method that has been gaining a lot of traction since the 2010s is the simulation of Kerr frequency comb dynamics in optical microresonators. The relative ease of implementation of the Lugiato–Lefever equation with reasonable numerical cost, along with its success in reproducing experimental spectra as well as predicting soliton behavior in these microresonators has made the method very popular. Die Split-Operator-Methode (SOP) ist ein numerisches Verfahren mit dem die zeitabhängige Schrödingergleichung gelöst werden kann. Bei der Methode wird der Hamiltonoperator in einen kinetischen Teil (Impulsteil) und in einen Potentialteil gespalten und einzeln angewendet. Dabei wird von der schnellen Fourier-Transformation (FFT) Gebrauch gemacht, um zwischen Impulsraum und Ortsraum zu wechseln.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Split-step_method?oldid=1117712270&ns=0
dbo:wikiPageLength
9261
foaf:isPrimaryTopicOf
wikipedia-en:Split-step_method
Subject Item
dbr:Partial_differential_equation
dbo:wikiPageWikiLink
dbr:Split-step_method
Subject Item
dbr:Kicked_rotator
dbo:wikiPageWikiLink
dbr:Split-step_method
Subject Item
dbr:Dispersion_(optics)
dbo:wikiPageWikiLink
dbr:Split-step_method
Subject Item
dbr:Split-step_Fourier_method
dbo:wikiPageWikiLink
dbr:Split-step_method
dbo:wikiPageRedirects
dbr:Split-step_method
Subject Item
dbr:Split_step_Fourier_method
dbo:wikiPageWikiLink
dbr:Split-step_method
dbo:wikiPageRedirects
dbr:Split-step_method
Subject Item
dbr:Split_step_fourier_method
dbo:wikiPageWikiLink
dbr:Split-step_method
dbo:wikiPageRedirects
dbr:Split-step_method
Subject Item
wikipedia-en:Split-step_method
foaf:primaryTopic
dbr:Split-step_method