This HTML5 document contains 109 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n21https://global.dbpedia.org/id/
n26http://dbpedia.org/resource/Combinatorics:
dbpedia-hehttp://he.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-cshttp://cs.dbpedia.org/resource/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n10https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Delay_differential_equation
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Invariant_(mathematics)
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:List_of_letters_used_in_mathematics_and_science
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Conjugate_gradient_method
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Generalized_minimal_residual_method
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Eigendecomposition_of_a_matrix
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Eigenvalues_and_eigenvectors
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Glossary_of_linear_algebra
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Leon_Mirsky
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
n26:_The_Rota_Way
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectra_(mathematical_association)
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectrum
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectrum_(disambiguation)
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
dbo:wikiPageDisambiguates
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectrum_of_a_matrix
rdf:type
yago:Array107939382 yago:Group100031264 yago:Arrangement107938773 yago:Matrix108267640 yago:WikicatMatrices yago:Abstraction100002137
rdfs:label
Spectre d'une matrice Widmo macierzy Spectrum of a matrix 行列のスペクトル Spektrum matice 矩阵的谱
rdfs:comment
Mějme čtvercovou matici typu . Spektrem matice nazýváme množinu všech vlastních čísel matice . Spektrum se obvykle označuje . 矩阵的谱(Spectrum of a matrix)是一個數學術語,指一個矩阵的特徵值的集合。一般地,若是有限维向量空间上的线性变换,则它的频谱为一系列标量的集合,满足矩阵不可逆。矩阵特征值之积等于矩阵的行列式,而特征值之和等于矩阵的迹。以此觀點,可以定義奇异方阵的為其非零特徵值的乘積(計算多元正态分布的密度會需要此數值)。 在許多應用中(例如PageRank),會關注特徵值絕對值最大的值。有些應用則會關注特徵值絕對值最小的值。不過一般而言,矩阵的谱可以提供有關矩陣的一些資訊。 数学の分野において、(有限次元)行列のスペクトル(ぎょうれつのスペクトル、英: Spectrum of a matrix)とは、その固有値の集合のことを言う。この概念は、無限次元の場合に作用素のスペクトルへと拡張される。行列の行列式は、その各固有値の積に等しい。同様に、行列の跡(トレース)は、その各固有値の和に等しい。この観点から、特異行列に対するを、そのゼロでない各固有値の積として定義することが出来る(多変量正規分布の密度と求める上で、この概念が必要となる)。 En mathématiques, le spectre d'une matrice est l'ensemble de ses valeurs propres. En général, si est un opérateur linéaire sur n'importe quel espace vectoriel, alors son spectre est l'ensemble des scalaires tels que n'est pas inversible. Le déterminant d'une matrice est égal au produit de ses valeurs propres. De la même façon, la trace d'une matrice est égale à la somme de ses valeurs propres. On peut, donc, définir un pseudo-déterminant d'une matrice unitaire comme étant le produit de ses valeurs propres non nulles. In mathematics, the spectrum of a matrix is the set of its eigenvalues. More generally, if is a linear operator on any finite-dimensional vector space, its spectrum is the set of scalars such that is not invertible. The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues.From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this quantity). Widmo macierzy (spektrum macierzy) – zbiór wszystkich wartości własnych danej macierzy kwadratowej Zbiór ten oznaczany jest symbolem Widmo macierzy jest szczególnym przypadkiem widma operatora przestrzeni skończenie wymiarowej.
dct:subject
dbc:Matrix_theory
dbo:wikiPageID
206136
dbo:wikiPageRevisionID
1097840228
dbo:wikiPageWikiLink
dbr:Spectral_theory dbr:Pseudo-determinant dbr:Characteristic_polynomial dbr:Vector_space dbr:Linear_operator dbr:Square_matrix dbr:Dimension_(vector_space) dbr:Spectral_radius dbr:John_Wiley_&_Sons dbr:Trace_(linear_algebra) dbr:Singular_matrix dbr:Algebraic_multiplicity dbr:Multiset dbr:Mathematics dbr:Generalized_eigenspace dbr:Absolute_value dbr:Root_of_a_polynomial dbr:Diagonalizable_matrix dbc:Matrix_theory dbr:PageRank dbr:Johns_Hopkins_University_Press dbr:Basis_(linear_algebra) dbr:Invertible_function dbr:Matrix_(mathematics) dbr:Field_(mathematics) dbr:Eigenvector dbr:Eigenvalue dbr:Bounded_linear_operator dbr:Matrix_decomposition dbr:Multivariate_normal_distribution dbr:Supremum dbr:Eigendecomposition dbr:Set_(mathematics) dbr:Determinant dbr:Matrix_multiplication dbr:Blaisdell_Publishing_Company
dbo:wikiPageExternalLink
n10:advancedengineer00krey
owl:sameAs
dbpedia-fr:Spectre_d'une_matrice dbpedia-pl:Widmo_macierzy dbpedia-zh:矩阵的谱 dbpedia-he:ספקטרום_של_מטריצה dbpedia-cs:Spektrum_matice dbpedia-fa:طیف_ماتریس n21:3DgnN dbpedia-ja:行列のスペクトル wikidata:Q3490774 yago-res:Spectrum_of_a_matrix freebase:m.06rcyc
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Citation dbt:Linear-algebra-stub
dbo:abstract
En mathématiques, le spectre d'une matrice est l'ensemble de ses valeurs propres. En général, si est un opérateur linéaire sur n'importe quel espace vectoriel, alors son spectre est l'ensemble des scalaires tels que n'est pas inversible. Le déterminant d'une matrice est égal au produit de ses valeurs propres. De la même façon, la trace d'une matrice est égale à la somme de ses valeurs propres. On peut, donc, définir un pseudo-déterminant d'une matrice unitaire comme étant le produit de ses valeurs propres non nulles. In mathematics, the spectrum of a matrix is the set of its eigenvalues. More generally, if is a linear operator on any finite-dimensional vector space, its spectrum is the set of scalars such that is not invertible. The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues.From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this quantity). In many applications, such as PageRank, one is interested in the dominant eigenvalue, i.e. that which is largest in absolute value. In other applications, the smallest eigenvalue is important, but in general, the whole spectrum provides valuable information about a matrix. 数学の分野において、(有限次元)行列のスペクトル(ぎょうれつのスペクトル、英: Spectrum of a matrix)とは、その固有値の集合のことを言う。この概念は、無限次元の場合に作用素のスペクトルへと拡張される。行列の行列式は、その各固有値の積に等しい。同様に、行列の跡(トレース)は、その各固有値の和に等しい。この観点から、特異行列に対するを、そのゼロでない各固有値の積として定義することが出来る(多変量正規分布の密度と求める上で、この概念が必要となる)。 Widmo macierzy (spektrum macierzy) – zbiór wszystkich wartości własnych danej macierzy kwadratowej Zbiór ten oznaczany jest symbolem Widmo macierzy jest szczególnym przypadkiem widma operatora przestrzeni skończenie wymiarowej. 矩阵的谱(Spectrum of a matrix)是一個數學術語,指一個矩阵的特徵值的集合。一般地,若是有限维向量空间上的线性变换,则它的频谱为一系列标量的集合,满足矩阵不可逆。矩阵特征值之积等于矩阵的行列式,而特征值之和等于矩阵的迹。以此觀點,可以定義奇异方阵的為其非零特徵值的乘積(計算多元正态分布的密度會需要此數值)。 在許多應用中(例如PageRank),會關注特徵值絕對值最大的值。有些應用則會關注特徵值絕對值最小的值。不過一般而言,矩阵的谱可以提供有關矩陣的一些資訊。 Mějme čtvercovou matici typu . Spektrem matice nazýváme množinu všech vlastních čísel matice . Spektrum se obvykle označuje .
prov:wasDerivedFrom
wikipedia-en:Spectrum_of_a_matrix?oldid=1097840228&ns=0
dbo:wikiPageLength
4178
foaf:isPrimaryTopicOf
wikipedia-en:Spectrum_of_a_matrix
Subject Item
dbr:Spectrum_of_a_ring
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Lanczos_algorithm
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectral_graph_theory
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Schur_decomposition
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Alternating-direction_implicit_method
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Perron–Frobenius_theorem
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectral_radius
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Ihara_zeta_function
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spin_network
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectral_clustering
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Spectral_abscissa
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
Subject Item
dbr:Eigenspectrum
dbo:wikiPageWikiLink
dbr:Spectrum_of_a_matrix
dbo:wikiPageRedirects
dbr:Spectrum_of_a_matrix
Subject Item
wikipedia-en:Spectrum_of_a_matrix
foaf:primaryTopic
dbr:Spectrum_of_a_matrix