This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
n4https://wiki.openoffice.org/wiki/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Metaheuristic
dbo:wikiPageWikiLink
dbr:Social_cognitive_optimization
Subject Item
dbr:Social_cognitive_optimization
rdf:type
dbo:Software
rdfs:label
社会认知优化 Social cognitive optimization
rdfs:comment
社会认知优化(Social Cognitive Optimization, SCO),又称社会认识优化算法、社会认知算法。它是一种基于社会认知理论的群体智能优化算法。 SCO算法已经被应用于非线性规划问题,布尔可满足性问题,软件可靠性分配问题,自动机制设计等。 Social cognitive optimization (SCO) is a population-based metaheuristic optimization algorithm which was developed in 2002. This algorithm is based on the social cognitive theory, and the key point of the ergodicity is the process of individual learning of a set of agents with their own memory and their social learning with the knowledge points in the social sharing library. It has been used for solving continuous optimization, integer programming, and combinatorial optimization problems. It has been incorporated into the NLPSolver extension of Calc in Apache OpenOffice.
dct:subject
dbc:Optimization_algorithms_and_methods dbc:Heuristic_algorithms dbc:Collective_intelligence
dbo:wikiPageID
44955090
dbo:wikiPageRevisionID
1049119044
dbo:wikiPageWikiLink
dbc:Heuristic_algorithms dbc:Optimization_algorithms_and_methods dbr:Differential_evolution dbr:Combinatorial_optimization dbr:Continuous_optimization dbr:Learning dbr:Integer_programming dbc:Collective_intelligence dbr:Social_cognitive_theory dbr:Particle_swarm_optimization dbr:Apache_OpenOffice dbr:Premature_convergence dbr:Social_learning_theory dbr:Tournament_selection dbr:Optimization dbr:Metaheuristic dbr:Markov_chain dbr:Memory
dbo:wikiPageExternalLink
n4:NLPSolver
owl:sameAs
yago-res:Social_cognitive_optimization n15:83e3 freebase:m.012lb441 wikidata:Q10443780 dbpedia-zh:社会认知优化
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
社会认知优化(Social Cognitive Optimization, SCO),又称社会认识优化算法、社会认知算法。它是一种基于社会认知理论的群体智能优化算法。 SCO算法已经被应用于非线性规划问题,布尔可满足性问题,软件可靠性分配问题,自动机制设计等。 Social cognitive optimization (SCO) is a population-based metaheuristic optimization algorithm which was developed in 2002. This algorithm is based on the social cognitive theory, and the key point of the ergodicity is the process of individual learning of a set of agents with their own memory and their social learning with the knowledge points in the social sharing library. It has been used for solving continuous optimization, integer programming, and combinatorial optimization problems. It has been incorporated into the NLPSolver extension of Calc in Apache OpenOffice.
gold:hypernym
dbr:Algorithm
prov:wasDerivedFrom
wikipedia-en:Social_cognitive_optimization?oldid=1049119044&ns=0
dbo:wikiPageLength
6581
foaf:isPrimaryTopicOf
wikipedia-en:Social_cognitive_optimization
Subject Item
dbr:Global_optimization
dbo:wikiPageWikiLink
dbr:Social_cognitive_optimization
Subject Item
dbr:Social_learning_theory
dbo:wikiPageWikiLink
dbr:Social_cognitive_optimization
Subject Item
wikipedia-en:Social_cognitive_optimization
foaf:primaryTopic
dbr:Social_cognitive_optimization