This HTML5 document contains 69 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Beam_propagation_method
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:SVEA
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
dbo:wikiPageRedirects
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Index_of_physics_articles_(S)
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Wave_action_(continuum_mechanics)
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Slowly_varying_envelope_approximation
rdfs:label
Метод медленно меняющихся амплитуд Slowly varying envelope approximation
rdfs:comment
In physics, slowly varying envelope approximation (SVEA, sometimes also called slowly varying asymmetric approximation or SVAA) is the assumption that the envelope of a forward-travelling wave pulse varies slowly in time and space compared to a period or wavelength. This requires the spectrum of the signal to be narrow-banded—hence it also referred to as the narrow-band approximation. Метод медленно меняющихся амплитуд (МММА, иногда метод Ван-дер-Поля) применяется для приближенного решения нелинейных уравнений, близких к линейным, а колебания близки к гармоническим. Метод основан на допущении, что амплитуда (огибающая) волны меняется медленно во времени и пространстве по сравнению с периодом волны. Метод применяется, например, в радиофизике, нелинейной оптике.
dcterms:subject
dbc:Asymptotic_analysis dbc:Theoretical_physics
dbo:wikiPageID
22392651
dbo:wikiPageRevisionID
1095192957
dbo:wikiPageWikiLink
dbc:Asymptotic_analysis dbr:WKB_approximation dbr:Carrier_wave dbr:Partial_derivative dbr:Angular_frequency dbr:Narrow-band dbr:Ultrashort_pulse dbr:Parabolic_partial_differential_equation dbr:Complex_amplitude dbc:Theoretical_physics dbr:Physics dbr:Wave_number dbr:Free-electron_laser dbr:Dispersion_relation dbr:Hyperbolic_partial_differential_equation dbr:Electromagnetic_wave_equation dbr:Period_(physics) dbr:Laplace_operator dbr:Wave dbr:Envelope_(waves) dbr:Spectrum dbr:Wavelength dbr:Real_part
owl:sameAs
wikidata:Q7542169 n14:4uuTC freebase:m.05sy0kb dbpedia-fa:تقریب_پوش_کندتغییر dbpedia-ru:Метод_медленно_меняющихся_амплитуд
dbp:wikiPageUsesTemplate
dbt:! dbt:Redirect dbt:Pad dbt:Reflist
dbo:abstract
Метод медленно меняющихся амплитуд (МММА, иногда метод Ван-дер-Поля) применяется для приближенного решения нелинейных уравнений, близких к линейным, а колебания близки к гармоническим. Метод основан на допущении, что амплитуда (огибающая) волны меняется медленно во времени и пространстве по сравнению с периодом волны. Метод применяется, например, в радиофизике, нелинейной оптике. In physics, slowly varying envelope approximation (SVEA, sometimes also called slowly varying asymmetric approximation or SVAA) is the assumption that the envelope of a forward-travelling wave pulse varies slowly in time and space compared to a period or wavelength. This requires the spectrum of the signal to be narrow-banded—hence it also referred to as the narrow-band approximation. The slowly varying envelope approximation is often used because the resulting equations are in many cases easier to solve than the original equations, reducing the order of—all or some of—the highest-order partial derivatives. But the validity of the assumptions which are made need to be justified.
gold:hypernym
dbr:Assumption
prov:wasDerivedFrom
wikipedia-en:Slowly_varying_envelope_approximation?oldid=1095192957&ns=0
dbo:wikiPageLength
6380
foaf:isPrimaryTopicOf
wikipedia-en:Slowly_varying_envelope_approximation
Subject Item
dbr:Svea
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
dbo:wikiPageDisambiguates
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Averaged_Lagrangian
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:WKB_approximation
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Fourier_optics
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Eigenmode_expansion
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Modulational_instability
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Dispersion_(optics)
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Second-harmonic_generation
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Soliton_(optics)
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Experimental_mathematics
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Ultrashort_pulse
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Supercontinuum
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Narrow_band_approximation
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
dbo:wikiPageRedirects
dbr:Slowly_varying_envelope_approximation
Subject Item
dbr:Narrow_banded
dbo:wikiPageWikiLink
dbr:Slowly_varying_envelope_approximation
dbo:wikiPageRedirects
dbr:Slowly_varying_envelope_approximation
Subject Item
wikipedia-en:Slowly_varying_envelope_approximation
foaf:primaryTopic
dbr:Slowly_varying_envelope_approximation