This HTML5 document contains 86 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n22http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
n20https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
n17http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Representation_theory
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Matching_(graph_theory)
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Skew-symmetric_graph
rdf:type
yago:WikicatGraphFamilies yago:Abstraction100002137 yago:SocialGroup107950920 yago:YagoLegalActor yago:YagoLegalActorGeo yago:Organization108008335 yago:YagoPermanentlyLocatedEntity yago:Group100031264 yago:Family108078020 yago:Unit108189659
rdfs:label
Skew-symmetric graph Grafo antissimétrico Кососимметрический граф
rdfs:comment
In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs. No campo da matemática da teoria dos grafos, um grafo antissimétrico é um grafo orientado que é isomórfico ao seu próprio , o grafo formado pela inversão de todas as suas arestas. O isomorfismo necessita ser uma involução sem nenhum ponto fixo. Кососимметрический граф — ориентированный граф, изоморфный своему собственному транспонированному графу. Этот граф образуется путём обращения всех дуг с изоморфизмом и является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям .
foaf:depiction
n17:Implication_graph.svg
dcterms:subject
dbc:Directed_graphs dbc:Matching_(graph_theory) dbc:Graph_families
dbo:wikiPageID
17283742
dbo:wikiPageRevisionID
1095805232
dbo:wikiPageWikiLink
dbc:Directed_graphs dbr:Matching_(graph_theory) dbr:Involution_(mathematics) dbr:Bridge_(graph_theory) dbr:Bidirected_graph dbr:Bipartite_graph dbr:Bipartite_double_cover dbr:Empty_graph dbr:Implication_graph dbr:Graph_theory dbr:Conjunctive_normal_form dbr:Orientation_(graph_theory) dbr:Transpose_graph dbr:Graph_isomorphism dbr:Directed_graph dbr:Fixed_point_(mathematics) dbr:Train_track_(mathematics) dbc:Matching_(graph_theory) dbr:Graph_drawing dbc:Graph_families dbr:Path_graph dbr:NP-complete dbr:Max-flow_min-cut_theorem dbr:2-satisfiability dbr:Conway's_Game_of_Life dbr:Still_life_(cellular_automaton) n22:Implication_graph.svg dbr:Cycle_graph dbr:Strongly_connected_component
owl:sameAs
wikidata:Q7534781 dbpedia-hu:Ferdeszimmetrikus_gráf freebase:m.043m0_6 dbpedia-ru:Кососимметрический_граф yago-res:Skew-symmetric_graph n20:4ukug dbpedia-pt:Grafo_antissimétrico
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Sic dbt:Reflist dbt:Sfnp dbt:Harvtxt dbt:Citation dbt:Graph_families_defined_by_their_automorphisms dbt:Doi
dbo:thumbnail
n17:Implication_graph.svg?width=300
dbo:abstract
No campo da matemática da teoria dos grafos, um grafo antissimétrico é um grafo orientado que é isomórfico ao seu próprio , o grafo formado pela inversão de todas as suas arestas. O isomorfismo necessita ser uma involução sem nenhum ponto fixo. Grafos antissimétricos foram primeiramente introduzidos sob o nome de "dígrafos antissimétricos" por W.T. Tutte em 1967. Eles surgiram quando da modelagem da busca de caminhos alternados e ciclos alternados em algoritmos para encontrar acoplamentos em grafos, em testes se um padrão still life no jogo da vida, desenvolvido pelo matemático britânico John Horton Conway, pode ser dividido em componentes mais simples, em , e em usados para resolver eficientemente o problema da . In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs. Skew-symmetric graphs were first introduced under the name of antisymmetrical digraphs by , later as the double covering graphs of polar graphs by , and still later as the double covering graphs of bidirected graphs by . They arise in modeling the search for alternating paths and alternating cycles in algorithms for finding matchings in graphs, in testing whether a still life pattern in Conway's Game of Life may be partitioned into simpler components, in graph drawing, and in the implication graphs used to efficiently solve the 2-satisfiability problem. Кососимметрический граф — ориентированный граф, изоморфный своему собственному транспонированному графу. Этот граф образуется путём обращения всех дуг с изоморфизмом и является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям . Кососимметрические графы введены сначала под именем антисимметричные орграфы Таттом, позднее под именем двойные накрывающие графы полярных графов их использовал Зелинка, а позже под именем графов двойных накрытий двунаправленных графов использовал Заславский. Они возникают, например, в моделировании поиска чередующихся путей и циклов, в алгоритмах для поиска паросочетания в графах для тестирования, в задаче разложения конфигурации в игре «Жизнь» на меньшие компоненты, в задаче визуализации графов и в задаче построения , используемых для эффективного решения задачи .
prov:wasDerivedFrom
wikipedia-en:Skew-symmetric_graph?oldid=1095805232&ns=0
dbo:wikiPageLength
17484
foaf:isPrimaryTopicOf
wikipedia-en:Skew-symmetric_graph
Subject Item
dbr:Still_life_(cellular_automaton)
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Transpose_graph
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Graph_automorphism
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:2-satisfiability
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Bidirected_graph
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Antisymmetric
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Skew
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
dbo:wikiPageDisambiguates
dbr:Skew-symmetric_graph
Subject Item
dbr:Implication_graph
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
dbr:Singly_and_doubly_even
dbo:wikiPageWikiLink
dbr:Skew-symmetric_graph
Subject Item
wikipedia-en:Skew-symmetric_graph
foaf:primaryTopic
dbr:Skew-symmetric_graph