This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Self-concordant_function
rdfs:label
Самосогласованная функция Self-concordant function
rdfs:comment
In optimization, a self-concordant function is a function for which or, equivalently, a function that, wherever , satisfies and which satisfies elsewhere. More generally, a multivariate function is self-concordant if or, equivalently, if its restriction to any arbitrary line is self-concordant. В математической оптимизации самосогласованной функцией называют трижды дифференцируемую выпуклую функцию , вторая и третья производные которой связаны неравенством: Многомерную функцию называют самосогласованной, если одномерная функция является самосогласованной для любых .
dcterms:subject
dbc:Functions_and_mappings
dbo:wikiPageID
14479711
dbo:wikiPageRevisionID
1112599340
dbo:wikiPageWikiLink
dbr:Positive_semidefinite_matrix dbr:Optimization_(mathematics) dbr:Convex_conjugate dbr:Yurii_Nesterov dbr:Arkadi_Nemirovski dbr:Barrier_function dbr:Newton's_method dbc:Functions_and_mappings dbr:Lipschitz_continuity dbr:Function_(mathematics) dbr:Interior_point_method
owl:sameAs
dbpedia-ru:Самосогласованная_функция freebase:m.03d4v7_ wikidata:Q4406886 n16:45ZAZ
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Mathapplied-stub dbt:Refimprove
dbo:abstract
В математической оптимизации самосогласованной функцией называют трижды дифференцируемую выпуклую функцию , вторая и третья производные которой связаны неравенством: Многомерную функцию называют самосогласованной, если одномерная функция является самосогласованной для любых . In optimization, a self-concordant function is a function for which or, equivalently, a function that, wherever , satisfies and which satisfies elsewhere. More generally, a multivariate function is self-concordant if or, equivalently, if its restriction to any arbitrary line is self-concordant.
prov:wasDerivedFrom
wikipedia-en:Self-concordant_function?oldid=1112599340&ns=0
dbo:wikiPageLength
13047
foaf:isPrimaryTopicOf
wikipedia-en:Self-concordant_function
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Self-concordant_function
Subject Item
dbr:Convex_optimization
dbo:wikiPageWikiLink
dbr:Self-concordant_function
Subject Item
dbr:Yurii_Nesterov
dbo:wikiPageWikiLink
dbr:Self-concordant_function
Subject Item
dbr:Arkadi_Nemirovski
dbo:wikiPageWikiLink
dbr:Self-concordant_function
Subject Item
dbr:Augmented_Lagrangian_method
dbo:wikiPageWikiLink
dbr:Self-concordant_function
Subject Item
dbr:Self-concordant
dbo:wikiPageWikiLink
dbr:Self-concordant_function
dbo:wikiPageRedirects
dbr:Self-concordant_function
Subject Item
wikipedia-en:Self-concordant_function
foaf:primaryTopic
dbr:Self-concordant_function