This HTML5 document contains 100 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n19http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n17https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
n12https://qilin-zhang.github.io/_pages/zips/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Beamforming
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:MUSIC_(algorithm)
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Periodogram
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Inverse_problem
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Magnetic_resonance_imaging
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:CT_scan
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Direction_of_arrival
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Iterative_reconstruction
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Radon_transform
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Tomographic_reconstruction
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Array_processing
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Synthetic-aperture_radar
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Sparse_Asymptotic_Minimum_Variance
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
dbo:wikiPageRedirects
dbr:SAMV_(algorithm)
Subject Item
dbr:Sensor_array
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Matched_filter
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:Super-resolution_imaging
dbo:wikiPageWikiLink
dbr:SAMV_(algorithm)
Subject Item
dbr:SAMV_(algorithm)
rdfs:label
SAMV SAMV (algorithm) SAMV (アルゴリズム) 迭代稀疏漸近最小方差算法
rdfs:comment
迭代稀疏漸近最小方差算法是用於信號處理中的譜估計和到達方向(DOA)估計的無參數超分辨率算法。 這個名稱是為了強調漸近最小方差(AMV)標準的創造基礎。 它是在惡劣環境下恢復多個高相關源的幅度和頻率特性的有力工具,例如有限數量的快照,低信噪比。 它可以用於合成孔徑雷達。 SAMV(反復スパース漸近最小分散)は、信号処理におけるスペクトル推定および到着方向 (DOA) 推定のためのパラメータフリーの超解像アルゴリズムである。この名前は、漸近最小分散 (AMV) 基準の基礎を強調するために造語された。限られた数のスナップショット、低い信号対雑音比など、厳しい環境下で複数の高相関ソースの振幅と周波数の両方の特性を回復する強力なツールである。合成アパーチャレーダーイメージングとさまざまなソースローカリゼーション。 SAMV (iterative sparse asymptotic minimum variance) is a parameter-free superresolution algorithm for the linear inverse problem in spectral estimation, direction-of-arrival (DOA) estimation and tomographic reconstruction with applications in signal processing, medical imaging and remote sensing. The name was coined in 2013 to emphasize its basis on the asymptotically minimum variance (AMV) criterion. It is a powerful tool for the recovery of both the amplitude and frequency characteristics of multiple highly correlated sources in challenging environments (e.g., limited number of snapshots and low signal-to-noise ratio). Applications include synthetic-aperture radar, computed tomography scan, and magnetic resonance imaging (MRI). SAMV (반복 스파 스 점근 최소 분산)는 신호 처리의 스펙트럼 추정 및 도착 방향 (DOA) 추정을 위한 파라미터 무료 슈퍼 해상도 알고리즘이다. 이 이름은 점근 최소 분산 (AMV) 기준의 기초를 강조하기 위해 만들어 낸되었다. 제한된 수의 스냅 샷 낮은 신호대 잡음비 등 어려운 환경에서 여러 높은 상관 소스의 진폭과 주파수의 두 특성을 복구하는 강력한 도구다. 합성 개구 레이다 영상과 다양한 소스 지역화.
foaf:depiction
n11:IEEE_transaction_on_Signal_Processing_Paper_Results_Sample.jpg
dcterms:subject
dbc:Frequency-domain_analysis dbc:Signal_estimation dbc:Fourier_analysis dbc:Multidimensional_signal_processing dbc:Trigonometry dbc:Signal_processing dbc:Inverse_problems dbc:Medical_imaging dbc:Wave_mechanics dbc:Tomography
dbo:wikiPageID
56343589
dbo:wikiPageRevisionID
1102905551
dbo:wikiPageWikiLink
dbr:Spectral_leakage dbc:Fourier_analysis dbr:Vectorization_(mathematics) dbr:CT_scan dbr:Phased_array dbc:Trigonometry dbc:Signal_estimation dbr:Spectral_density_estimation dbc:Multidimensional_signal_processing dbr:Signal_processing dbr:Radon_transform dbr:Medical_imaging dbr:Periodogram dbr:MUSIC_(algorithm) dbr:Maximum_likelihood_estimation dbr:Matched_filter dbr:Correlation_coefficient dbr:Pulse_compression dbc:Medical_imaging dbr:Synthetic-aperture_radar dbc:Signal_processing dbr:Magnetic_resonance_imaging dbr:Super-resolution_imaging dbr:Tomographic_reconstruction dbr:Single-input_single-output_system dbr:Direction_of_arrival dbc:Inverse_problems dbr:Covariance_matrix dbr:Pulse-Doppler_radar dbc:Wave_mechanics dbr:Dirac_delta_function dbr:Array_processing dbr:Sonar dbr:Signal-to-noise_ratio dbr:Remote_sensing dbr:Radar dbr:Compressed_sensing dbr:Sensor_array n19:IEEE_transaction_on_Signal_Processing_Paper_Results_Sample.jpg dbc:Tomography dbr:Fast_Fourier_transform dbr:MATLAB dbr:Inverse_problem dbc:Frequency-domain_analysis dbr:Sparse_dictionary_learning
dbo:wikiPageExternalLink
n12:Iterative_Sparse_Asymptotic_Minimum_Variance_Based_Approach_Matlab_Codes.zip%3Fraw=true
owl:sameAs
dbpedia-ko:SAMV dbpedia-zh:迭代稀疏漸近最小方差算法 n17:6HVWb wikidata:Q55632196 dbpedia-ja:SAMV_(アルゴリズム)
dbp:wikiPageUsesTemplate
dbt:Portal dbt:Reflist
dbo:thumbnail
n11:IEEE_transaction_on_Signal_Processing_Paper_Results_Sample.jpg?width=300
dbo:abstract
迭代稀疏漸近最小方差算法是用於信號處理中的譜估計和到達方向(DOA)估計的無參數超分辨率算法。 這個名稱是為了強調漸近最小方差(AMV)標準的創造基礎。 它是在惡劣環境下恢復多個高相關源的幅度和頻率特性的有力工具,例如有限數量的快照,低信噪比。 它可以用於合成孔徑雷達。 SAMV (iterative sparse asymptotic minimum variance) is a parameter-free superresolution algorithm for the linear inverse problem in spectral estimation, direction-of-arrival (DOA) estimation and tomographic reconstruction with applications in signal processing, medical imaging and remote sensing. The name was coined in 2013 to emphasize its basis on the asymptotically minimum variance (AMV) criterion. It is a powerful tool for the recovery of both the amplitude and frequency characteristics of multiple highly correlated sources in challenging environments (e.g., limited number of snapshots and low signal-to-noise ratio). Applications include synthetic-aperture radar, computed tomography scan, and magnetic resonance imaging (MRI). SAMV(反復スパース漸近最小分散)は、信号処理におけるスペクトル推定および到着方向 (DOA) 推定のためのパラメータフリーの超解像アルゴリズムである。この名前は、漸近最小分散 (AMV) 基準の基礎を強調するために造語された。限られた数のスナップショット、低い信号対雑音比など、厳しい環境下で複数の高相関ソースの振幅と周波数の両方の特性を回復する強力なツールである。合成アパーチャレーダーイメージングとさまざまなソースローカリゼーション。 SAMV (반복 스파 스 점근 최소 분산)는 신호 처리의 스펙트럼 추정 및 도착 방향 (DOA) 추정을 위한 파라미터 무료 슈퍼 해상도 알고리즘이다. 이 이름은 점근 최소 분산 (AMV) 기준의 기초를 강조하기 위해 만들어 낸되었다. 제한된 수의 스냅 샷 낮은 신호대 잡음비 등 어려운 환경에서 여러 높은 상관 소스의 진폭과 주파수의 두 특성을 복구하는 강력한 도구다. 합성 개구 레이다 영상과 다양한 소스 지역화.
prov:wasDerivedFrom
wikipedia-en:SAMV_(algorithm)?oldid=1102905551&ns=0
dbo:wikiPageLength
12805
foaf:isPrimaryTopicOf
wikipedia-en:SAMV_(algorithm)
Subject Item
wikipedia-en:SAMV_(algorithm)
foaf:primaryTopic
dbr:SAMV_(algorithm)