This HTML5 document contains 32 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n14http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n8https://global.dbpedia.org/id/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n7http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Gradient_discretisation_method
dbo:wikiPageWikiLink
dbr:Raviart–Thomas_basis_functions
Subject Item
dbr:Raviart-Thomas_basis_functions
dbo:wikiPageWikiLink
dbr:Raviart–Thomas_basis_functions
dbo:wikiPageRedirects
dbr:Raviart–Thomas_basis_functions
Subject Item
dbr:Piola_transformation
dbo:wikiPageWikiLink
dbr:Raviart–Thomas_basis_functions
Subject Item
dbr:Raviart–Thomas_basis_functions
rdfs:label
Raviart–Thomas basis functions
rdfs:comment
In applied mathematics, Raviart–Thomas basis functions are vector basis functions used in finite element and boundary element methods. They are regularly used as basis functions when working in electromagnetics. They are sometimes called Rao-Wilton-Glisson basis functions. The space spanned by the Raviart–Thomas basis functions of order is the smallest polynomial space such that the divergence maps onto , the space of piecewise polynomials of order .
foaf:depiction
n7:Raviart_thomas_labelled.png
dcterms:subject
dbc:Numerical_differential_equations dbc:Partial_differential_equations dbc:Finite_element_method
dbo:wikiPageID
48007881
dbo:wikiPageRevisionID
1117711215
dbo:wikiPageWikiLink
dbr:Divergence dbr:Two-dimensional_space dbc:Partial_differential_equations dbr:Electromagnetics dbr:Boundary_element_method dbc:Numerical_differential_equations dbr:Basis_function dbc:Finite_element_method dbr:Function_space dbr:Finite_element_method n14:Raviart_thomas_labelled.png dbr:Vector_function
owl:sameAs
wikidata:Q25304199 n8:2Ng6V
dbo:thumbnail
n7:Raviart_thomas_labelled.png?width=300
dbo:abstract
In applied mathematics, Raviart–Thomas basis functions are vector basis functions used in finite element and boundary element methods. They are regularly used as basis functions when working in electromagnetics. They are sometimes called Rao-Wilton-Glisson basis functions. The space spanned by the Raviart–Thomas basis functions of order is the smallest polynomial space such that the divergence maps onto , the space of piecewise polynomials of order .
prov:wasDerivedFrom
wikipedia-en:Raviart–Thomas_basis_functions?oldid=1117711215&ns=0
dbo:wikiPageLength
3698
foaf:isPrimaryTopicOf
wikipedia-en:Raviart–Thomas_basis_functions
Subject Item
wikipedia-en:Raviart–Thomas_basis_functions
foaf:primaryTopic
dbr:Raviart–Thomas_basis_functions