This HTML5 document contains 51 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Prior-free_mechanism
dbo:wikiPageWikiLink
dbr:Random-sampling_mechanism
Subject Item
dbr:Profit_extraction_mechanism
dbo:wikiPageWikiLink
dbr:Random-sampling_mechanism
Subject Item
dbr:Consensus_estimate
dbo:wikiPageWikiLink
dbr:Random-sampling_mechanism
Subject Item
dbr:Digital_goods_auction
dbo:wikiPageWikiLink
dbr:Random-sampling_mechanism
Subject Item
dbr:Maria-Florina_Balcan
dbo:wikiPageWikiLink
dbr:Random-sampling_mechanism
Subject Item
dbr:Sampling_(statistics)
dbo:wikiPageWikiLink
dbr:Random-sampling_mechanism
Subject Item
dbr:Random-sampling_mechanism
rdf:type
dbo:Organisation
rdfs:label
Random-sampling mechanism
rdfs:comment
A random-sampling mechanism (RSM) is a truthful mechanism that uses sampling in order to achieve approximately-optimal gain in prior-free mechanisms and prior-independent mechanisms. Suppose we want to sell some items in an auction and achieve maximum profit. The crucial difficulty is that we do not know how much each buyer is willing to pay for an item. If we know, at least, that the valuations of the buyers are random variables with some known probability distribution, then we can use a Bayesian-optimal mechanism. But often we do not know the distribution. In this case, random-sampling mechanisms provide an alternative solution.
dct:subject
dbc:Sampling_techniques dbc:Mechanism_design
dbo:wikiPageID
49023532
dbo:wikiPageRevisionID
1032061272
dbo:wikiPageWikiLink
dbr:Prior-free_mechanism dbr:Prior-independent_mechanism dbr:Envy-free dbr:Strategyproof dbr:VCG_auction dbr:Empirical_distribution_function dbr:VC_dimension dbr:Monotone_hazard_rate dbc:Mechanism_design dbr:Consensus_estimate dbr:Pricing dbc:Sampling_techniques dbr:Bayesian-optimal_mechanism dbr:Fair_coin dbr:Digital_goods_auction dbr:Dominant_strategy dbr:Sample_complexity dbr:Probability_distribution dbr:Simple_random_sampling dbr:Market_research dbr:Single-parameter_utility dbr:Law_of_large_numbers dbr:Price_discrimination dbr:Sampling_(statistics) dbr:Truthful_mechanism dbr:Random_variables dbr:Prior-free_mechanism_design
owl:sameAs
wikidata:Q24964164 yago-res:Random-sampling_mechanism n16:2MDg1
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Rp
dbo:abstract
A random-sampling mechanism (RSM) is a truthful mechanism that uses sampling in order to achieve approximately-optimal gain in prior-free mechanisms and prior-independent mechanisms. Suppose we want to sell some items in an auction and achieve maximum profit. The crucial difficulty is that we do not know how much each buyer is willing to pay for an item. If we know, at least, that the valuations of the buyers are random variables with some known probability distribution, then we can use a Bayesian-optimal mechanism. But often we do not know the distribution. In this case, random-sampling mechanisms provide an alternative solution.
gold:hypernym
dbr:Mechanism
prov:wasDerivedFrom
wikipedia-en:Random-sampling_mechanism?oldid=1032061272&ns=0
dbo:wikiPageLength
14107
foaf:isPrimaryTopicOf
wikipedia-en:Random-sampling_mechanism
Subject Item
wikipedia-en:Random-sampling_mechanism
foaf:primaryTopic
dbr:Random-sampling_mechanism