This HTML5 document contains 26 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Quasi-Hopf_algebra
dbo:wikiPageWikiLink
dbr:Quasi-triangular_quasi-Hopf_algebra
Subject Item
dbr:Quasi-triangular_Quasi-Hopf_algebra
dbo:wikiPageWikiLink
dbr:Quasi-triangular_quasi-Hopf_algebra
dbo:wikiPageRedirects
dbr:Quasi-triangular_quasi-Hopf_algebra
Subject Item
dbr:Quasi-triangular_quasi-Hopf_algebra
rdfs:label
Quasi-triangular quasi-Hopf algebra
rdfs:comment
A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra. A quasi-triangular quasi-Hopf algebra is a set where is a quasi-Hopf algebra and known as the R-matrix, is an invertible element such that for all , where is the switch map given by , and where and . The quasi-Hopf algebra becomes triangular if in addition, . The twisting of by is the same as for a quasi-Hopf algebra, with the additional definition of the twisted R-matrix
dcterms:subject
dbc:Coalgebras
dbo:wikiPageID
4965178
dbo:wikiPageRevisionID
1099383431
dbo:wikiPageWikiLink
dbr:Ukraine dbr:Quasi-triangular_Hopf_algebra dbr:Ribbon_Hopf_algebra dbc:Coalgebras dbr:Quasi-Hopf_algebra dbr:Quasi-bialgebra dbr:Vladimir_Drinfeld
owl:sameAs
n7:4tqpc freebase:m.0cxgjm wikidata:Q7269480
dbp:wikiPageUsesTemplate
dbt:Abstract-algebra-stub
dbo:abstract
A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra. A quasi-triangular quasi-Hopf algebra is a set where is a quasi-Hopf algebra and known as the R-matrix, is an invertible element such that for all , where is the switch map given by , and where and . The quasi-Hopf algebra becomes triangular if in addition, . The twisting of by is the same as for a quasi-Hopf algebra, with the additional definition of the twisted R-matrix A quasi-triangular (resp. triangular) quasi-Hopf algebra with is a quasi-triangular (resp. triangular) Hopf algebra as the latter two conditions in the definition reduce the conditions of quasi-triangularity of a Hopf algebra. Similarly to the twisting properties of the quasi-Hopf algebra, the property of being quasi-triangular or triangular quasi-Hopf algebra is preserved by twisting.
prov:wasDerivedFrom
wikipedia-en:Quasi-triangular_quasi-Hopf_algebra?oldid=1099383431&ns=0
dbo:wikiPageLength
2356
foaf:isPrimaryTopicOf
wikipedia-en:Quasi-triangular_quasi-Hopf_algebra
Subject Item
dbr:Quasitriangular_Hopf_algebra
dbo:wikiPageWikiLink
dbr:Quasi-triangular_quasi-Hopf_algebra
Subject Item
dbr:Ribbon_Hopf_algebra
dbo:wikiPageWikiLink
dbr:Quasi-triangular_quasi-Hopf_algebra
Subject Item
wikipedia-en:Quasi-triangular_quasi-Hopf_algebra
foaf:primaryTopic
dbr:Quasi-triangular_quasi-Hopf_algebra