This HTML5 document contains 58 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Quasiderivative
dbo:wikiPageWikiLink
dbr:Quasi-derivative
dbo:wikiPageRedirects
dbr:Quasi-derivative
Subject Item
dbr:Generalizations_of_the_derivative
dbo:wikiPageWikiLink
dbr:Quasi-derivative
Subject Item
dbr:Quasi-derivative
rdf:type
yago:Colligation105764197 yago:WikicatGeneralizationsOfTheDerivative yago:Process105701363 yago:PsychologicalFeature100023100 yago:Generalization105774415 yago:Abstraction100002137 yago:Association105763916 yago:Cognition100023271 yago:BasicCognitiveProcess105701944 yago:Memory105760202 yago:Space100028651 yago:WikicatBanachSpaces yago:Attribute100024264
rdfs:label
Quasi-derivative Quasi-pochodna
rdfs:comment
In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists, Quasi-pochodna – jedno z uogólnień pochodnej funkcji między przestrzeniami Banacha. Quasi-pochodną można postrzegać jako silniejszą wersję pojęcia pochodnej Gâteaux, lecz z kolei słabsze niż pochodna Frécheta (w sensie opisanym ).
dcterms:subject
dbc:Generalizations_of_the_derivative dbc:Banach_spaces
dbo:wikiPageID
15712191
dbo:wikiPageRevisionID
1119695882
dbo:wikiPageWikiLink
dbr:Gateaux_derivative dbr:Linear_transformation dbr:Banach_space dbr:Fréchet_derivative dbr:Derivative dbr:Continuous_function dbc:Banach_spaces dbr:Mathematics dbr:Open_set dbr:Function_(mathematics) dbr:Chain_rule dbc:Generalizations_of_the_derivative
owl:sameAs
wikidata:Q7269446 n11:4tV2Q dbpedia-pl:Quasi-pochodna yago-res:Quasi-derivative freebase:m.03nqzv6
dbp:wikiPageUsesTemplate
dbt:Functional_analysis dbt:Cite_book dbt:Short_description dbt:Analysis_in_topological_vector_spaces dbt:Mathanalysis-stub dbt:Reflist
dbo:abstract
Quasi-pochodna – jedno z uogólnień pochodnej funkcji między przestrzeniami Banacha. Quasi-pochodną można postrzegać jako silniejszą wersję pojęcia pochodnej Gâteaux, lecz z kolei słabsze niż pochodna Frécheta (w sensie opisanym ). In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists, If such a linear map u exists, then f is said to be quasi-differentiable at x0. Continuity of u need not be assumed, but it follows instead from the definition of the quasi-derivative. If f is Fréchet differentiable at x0, then by the chain rule, f is also quasi-differentiable and its quasi-derivative is equal to its Fréchet derivative at x0. The converse is true provided E is finite-dimensional. Finally, if f is quasi-differentiable, then it is Gateaux differentiable and its Gateaux derivative is equal to its quasi-derivative.
prov:wasDerivedFrom
wikipedia-en:Quasi-derivative?oldid=1119695882&ns=0
dbo:wikiPageLength
1828
foaf:isPrimaryTopicOf
wikipedia-en:Quasi-derivative
Subject Item
dbr:Banach_space
dbo:wikiPageWikiLink
dbr:Quasi-derivative
Subject Item
dbr:Quasi-differentiable
dbo:wikiPageWikiLink
dbr:Quasi-derivative
dbo:wikiPageRedirects
dbr:Quasi-derivative
Subject Item
dbr:Quasidifferentiable
dbo:wikiPageWikiLink
dbr:Quasi-derivative
dbo:wikiPageRedirects
dbr:Quasi-derivative
Subject Item
wikipedia-en:Quasi-derivative
foaf:primaryTopic
dbr:Quasi-derivative