This HTML5 document contains 83 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://books.google.com/
n20https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n16http://www.math.leidenuniv.nl/~tijdeman/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Beal_conjecture
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Pythagorean_quadruple
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Jacobi–Madden_equation
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Prouhet-Tarry-Escott_Problem
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
dbo:wikiPageRedirects
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Prouhet-Tarry-Escott_problem
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
dbo:wikiPageRedirects
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Tarry
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
dbo:wikiPageDisambiguates
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Escott
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
dbo:wikiPageDisambiguates
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Lander,_Parkin,_and_Selfridge_conjecture
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Anatoly_Karatsuba
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Euler's_sum_of_powers_conjecture
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Prouhet–Tarry–Escott_problem
rdf:type
yago:Attribute100024264 yago:Difficulty114408086 yago:WikicatMathematicalProblems yago:WikicatUnsolvedProblemsInMathematics yago:State100024720 yago:Problem114410605 yago:Abstraction100002137 yago:Condition113920835
rdfs:label
Problème de Prouhet-Tarry-Escott 等冪和問題 Prouhet–Tarry–Escott problem
rdfs:comment
En mathématiques, et plus particulièrement en théorie des nombres et en combinatoire, le problème de Prouhet-Tarry-Escott est de trouver, pour chaque entier , deux ensembles et de entiers chacun, tel que : pour chaque de jusqu'à un entier donné. Si et vérifient ces conditions, on écrit . On cherche une solution de taille minimale pour un degré donné. Ce problème, toujours ouvert, est nommé d'après Eugène Prouhet, qui l'a étudié en 1851, et Gaston Tarry et Edward Brind Escott, qui l'ont considéré au début des années 1910. In mathematics, the Prouhet–Tarry–Escott problem asks for two disjoint multisets A and B of n integers each, whose first k power sum symmetric polynomials are all equal.That is, the two multisets should satisfy the equations for each integer i from 1 to a given k. It has been shown that n must be strictly greater than k. Solutions with are called ideal solutions. Ideal solutions are known for and for . No ideal solution is known for or for . 等冪和問題是數論中一個有趣的問題,所謂等冪和即將左右不全等的等式兩邊各數字做同次方(冪)並相加後,能使等式成立,即能滿足下方一系列等式者,稱作「等冪和」。…… (以上所有數皆屬於整數) 關於這類數組的規律,尚無清楚且公認解答。目前已知最大的解为A = {±22, ±61, ±86, ±127, ±140, ±151},B = {±35, ±47, ±94, ±121, ±146, ±148},k=11。
dcterms:subject
dbc:Diophantine_equations dbc:Mathematical_problems
dbo:wikiPageID
16400356
dbo:wikiPageRevisionID
1110256006
dbo:wikiPageWikiLink
dbr:Jacobi–Madden_equation dbr:Gaston_Tarry dbr:Thue–Morse_sequence dbr:Discrete_tomography dbr:Lander,_Parkin,_and_Selfridge_conjecture dbr:Integer dbr:Power_sum_symmetric_polynomial dbr:Springer-Verlag dbr:Leonhard_Euler dbr:Multiset dbr:Gaussian_integers dbr:Beal's_conjecture dbr:Eugène_Prouhet dbr:Taxicab_number dbr:Mathematics dbr:Christian_Goldbach dbr:Euler's_sum_of_powers_conjecture dbc:Diophantine_equations dbr:Sums_of_powers dbr:Robert_Tijdeman dbr:Pythagorean_quadruple dbc:Mathematical_problems dbr:Disjoint_sets dbr:Andreas_Alpers
dbo:wikiPageExternalLink
n6:books%3Fid=A_ITwN13J6YC&pg=85%23PPA85,M1 n16:altijd.pdf
owl:sameAs
wikidata:Q3406235 freebase:m.03y07zd dbpedia-fr:Problème_de_Prouhet-Tarry-Escott dbpedia-zh:等冪和問題 n20:38xQe
dbp:wikiPageUsesTemplate
dbt:Sfn dbt:Mathworld dbt:Reflist dbt:Citation
dbp:title
Prouhet-Tarry-Escott problem
dbp:urlname
Prouhet-Tarry-EscottProblem
dbp:mode
cs2
dbo:abstract
等冪和問題是數論中一個有趣的問題,所謂等冪和即將左右不全等的等式兩邊各數字做同次方(冪)並相加後,能使等式成立,即能滿足下方一系列等式者,稱作「等冪和」。…… (以上所有數皆屬於整數) 關於這類數組的規律,尚無清楚且公認解答。目前已知最大的解为A = {±22, ±61, ±86, ±127, ±140, ±151},B = {±35, ±47, ±94, ±121, ±146, ±148},k=11。 En mathématiques, et plus particulièrement en théorie des nombres et en combinatoire, le problème de Prouhet-Tarry-Escott est de trouver, pour chaque entier , deux ensembles et de entiers chacun, tel que : pour chaque de jusqu'à un entier donné. Si et vérifient ces conditions, on écrit . On cherche une solution de taille minimale pour un degré donné. Ce problème, toujours ouvert, est nommé d'après Eugène Prouhet, qui l'a étudié en 1851, et Gaston Tarry et Edward Brind Escott, qui l'ont considéré au début des années 1910. La plus grande valeur de pour laquelle on connaît une solution avec est . Une solution correspondante est donnée par les ensembles suivants : In mathematics, the Prouhet–Tarry–Escott problem asks for two disjoint multisets A and B of n integers each, whose first k power sum symmetric polynomials are all equal.That is, the two multisets should satisfy the equations for each integer i from 1 to a given k. It has been shown that n must be strictly greater than k. Solutions with are called ideal solutions. Ideal solutions are known for and for . No ideal solution is known for or for . This problem was named after , who studied it in the early 1850s, and Gaston Tarry and Edward B. Escott, who studied it in the early 1910s. The problem originates from letters of Christian Goldbach and Leonhard Euler (1750/1751).
prov:wasDerivedFrom
wikipedia-en:Prouhet–Tarry–Escott_problem?oldid=1110256006&ns=0
dbo:wikiPageLength
6599
foaf:isPrimaryTopicOf
wikipedia-en:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Sums_of_powers
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Taxicab_number
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Evil_number
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Thue–Morse_sequence
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
Subject Item
dbr:Tarry-Escott_problem
dbo:wikiPageWikiLink
dbr:Prouhet–Tarry–Escott_problem
dbo:wikiPageRedirects
dbr:Prouhet–Tarry–Escott_problem
Subject Item
wikipedia-en:Prouhet–Tarry–Escott_problem
foaf:primaryTopic
dbr:Prouhet–Tarry–Escott_problem