This HTML5 document contains 50 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7http://dbpedia.org/resource/File:
n19https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n18http://www.cs.cornell.edu/~bindel/class/cs5220-f11/code/
n4http://www.academia.edu/download/46545236/
n14http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Parallel_all-pairs_shortest_path_algorithm
rdfs:label
Parallele All-Pair-Shortest-Paths-Algorithmen Parallel all-pairs shortest path algorithm
rdfs:comment
A central problem in algorithmic graph theory is the shortest path problem. Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this article two efficient algorithms solving this problem are introduced. Another variation of the problem is the single-source-shortest-paths (SSSP) problem, which also has parallel approaches: Parallel single-source shortest path algorithm. Parallele All-Pair-Shortest-Paths-Algorithmen sind Algorithmen in der Graphentheorie, um kürzeste Wege zwischen zwei Knoten zu finden. Die kürzesten Wege zwischen allen Knoten in einem Graphen zu finden, bezeichnet man als All-Pairs-Shortest-Path-Problem. Da bei sequentiellen Algorithmen, die dieses Problem lösen, große Graphen zu langen Laufzeiten führen, lohnt es sich diese zu parallelisieren. Hier werden Techniken zur Parallelisierung für die bekanntesten Algorithmen und deren Auswirkungen auf die Laufzeiten vorgestellt.
foaf:depiction
n14:Data-denpendencies-floyd.png n14:Apsp_dijkstra_distancelist.png n14:Apsp_dijkstra_graph.png n14:2d_block-mapping.png
dcterms:subject
dbc:Graph_algorithms
dbo:wikiPageID
56993742
dbo:wikiPageRevisionID
1098932192
dbo:wikiPageWikiLink
n7:Apsp_dijkstra_distancelist.png n7:Apsp_dijkstra_graph.png dbr:Dijkstra_algorithm dbr:Adjacency_matrix dbr:Reduce-operation n7:Data-denpendencies-floyd.png dbr:Shortest_path_problem dbr:Graph_theory dbc:Graph_algorithms dbr:Floyd_algorithm n7:2d_block-mapping.png dbr:Parallel_single-source_shortest_path_algorithm dbr:Sequential_algorithm dbr:Floyd–Warshall_algorithm
dbo:wikiPageExternalLink
n4:Scalability_of_parallel_algorithms_for_t20160616-15656-rc5uyt.pdf n18:path.pdf
owl:sameAs
dbpedia-de:Parallele_All-Pair-Shortest-Paths-Algorithmen wikidata:Q51173345 n19:5jDXw
dbp:wikiPageUsesTemplate
dbt:Manual dbt:Reflist dbt:Dead_link dbt:Cbignore dbt:No_footnotes dbt:Orphan dbt:Multiple_issues
dbo:thumbnail
n14:Apsp_dijkstra_graph.png?width=300
dbp:bot
medic
dbp:date
July 2022
dbo:abstract
Parallele All-Pair-Shortest-Paths-Algorithmen sind Algorithmen in der Graphentheorie, um kürzeste Wege zwischen zwei Knoten zu finden. Die kürzesten Wege zwischen allen Knoten in einem Graphen zu finden, bezeichnet man als All-Pairs-Shortest-Path-Problem. Da bei sequentiellen Algorithmen, die dieses Problem lösen, große Graphen zu langen Laufzeiten führen, lohnt es sich diese zu parallelisieren. Hier werden Techniken zur Parallelisierung für die bekanntesten Algorithmen und deren Auswirkungen auf die Laufzeiten vorgestellt. A central problem in algorithmic graph theory is the shortest path problem. Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this article two efficient algorithms solving this problem are introduced. Another variation of the problem is the single-source-shortest-paths (SSSP) problem, which also has parallel approaches: Parallel single-source shortest path algorithm.
prov:wasDerivedFrom
wikipedia-en:Parallel_all-pairs_shortest_path_algorithm?oldid=1098932192&ns=0
dbo:wikiPageLength
17905
foaf:isPrimaryTopicOf
wikipedia-en:Parallel_all-pairs_shortest_path_algorithm
Subject Item
dbr:Dijkstra's_algorithm
dbo:wikiPageWikiLink
dbr:Parallel_all-pairs_shortest_path_algorithm
Subject Item
dbr:Parallel_All-Pair-Shortest-Paths_Algorithms
dbo:wikiPageWikiLink
dbr:Parallel_all-pairs_shortest_path_algorithm
dbo:wikiPageRedirects
dbr:Parallel_all-pairs_shortest_path_algorithm
Subject Item
dbr:Parallel_single-source_shortest_path_algorithm
dbo:wikiPageWikiLink
dbr:Parallel_all-pairs_shortest_path_algorithm
Subject Item
wikipedia-en:Parallel_all-pairs_shortest_path_algorithm
foaf:primaryTopic
dbr:Parallel_all-pairs_shortest_path_algorithm