This HTML5 document contains 68 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n5https://global.dbpedia.org/id/
n14https://planetmath.org/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:P-adic_exponential_function
rdf:type
dbo:Drug yago:WikicatExponentials yago:Exponential113789462 yago:Function113783816 yago:MathematicalRelation113783581 yago:Relation100031921 yago:Abstraction100002137
rdfs:label
Função exponencial p-ádica P-adic exponential function Fonction exponentielle p-adique
rdfs:comment
En mathématiques, et plus particulièrement en analyse p-adique, la fonction exponentielle p-adique est un analogue p-adique de la fonction exponentielle usuelle sur les nombres complexes. Comme dans le cas complexe, elle admet une réciproque, appelée logarithme p-adique. In mathematics, particularly p-adic analysis, the p-adic exponential function is a p-adic analogue of the usual exponential function on the complex numbers. As in the complex case, it has an inverse function, named the p-adic logarithm. A função exponencial p-adic é uma analogia usual da função exponencial em números complexos quanto à análise p-ádica. Portanto, a função exponencial usual em C é definida por uma série infinita:
dcterms:subject
dbc:Exponentials dbc:P-adic_numbers
dbo:wikiPageID
28760028
dbo:wikiPageRevisionID
1068972869
dbo:wikiPageWikiLink
dbr:P-adic_analysis dbr:Strassmann's_theorem dbr:E_(mathematical_constant) dbr:Euler's_identity dbr:Artin–Hasse_exponential dbc:Exponentials dbr:Exponential_function dbr:Cambridge_University_Press dbr:Mathematics dbr:Complex_numbers dbc:P-adic_numbers dbr:London_Mathematical_Society dbr:Graduate_Texts_in_Mathematics
dbo:wikiPageExternalLink
n14:PadicExponentialAndPadicLogarithm
owl:sameAs
n5:4sWm2 yago-res:P-adic_exponential_function wikidata:Q7116916 dbpedia-pt:Função_exponencial_p-ádica freebase:m.0ddf1b1 dbpedia-fr:Fonction_exponentielle_p-adique
dbp:wikiPageUsesTemplate
dbt:= dbt:Reflist dbt:SubSup dbt:Citation dbt:Notelist dbt:Efn dbt:Cite_book
dbo:abstract
En mathématiques, et plus particulièrement en analyse p-adique, la fonction exponentielle p-adique est un analogue p-adique de la fonction exponentielle usuelle sur les nombres complexes. Comme dans le cas complexe, elle admet une réciproque, appelée logarithme p-adique. A função exponencial p-adic é uma analogia usual da função exponencial em números complexos quanto à análise p-ádica. Portanto, a função exponencial usual em C é definida por uma série infinita: In mathematics, particularly p-adic analysis, the p-adic exponential function is a p-adic analogue of the usual exponential function on the complex numbers. As in the complex case, it has an inverse function, named the p-adic logarithm.
gold:hypernym
dbr:Analogue
prov:wasDerivedFrom
wikipedia-en:P-adic_exponential_function?oldid=1068972869&ns=0
dbo:wikiPageLength
5854
foaf:isPrimaryTopicOf
wikipedia-en:P-adic_exponential_function
Subject Item
dbr:Gelfond–Schneider_theorem
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:Lindemann–Weierstrass_theorem
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:Logarithm
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:Exponential_function
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:Legendre's_formula
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:List_of_exponential_topics
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:P-adic_gamma_function
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:Baker's_theorem
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
Subject Item
dbr:Iwasawa_logarithm
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
dbo:wikiPageRedirects
dbr:P-adic_exponential_function
Subject Item
dbr:P-adic_exponential
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
dbo:wikiPageRedirects
dbr:P-adic_exponential_function
Subject Item
dbr:P-adic_logarithm
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
dbo:wikiPageRedirects
dbr:P-adic_exponential_function
Subject Item
dbr:P-adic_logarithm_function
dbo:wikiPageWikiLink
dbr:P-adic_exponential_function
dbo:wikiPageRedirects
dbr:P-adic_exponential_function
Subject Item
wikipedia-en:P-adic_exponential_function
foaf:primaryTopic
dbr:P-adic_exponential_function