This HTML5 document contains 82 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n9http://www.encyclopediaofmath.org/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n15http://projecteuclid.org/euclid.cmp/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Lagrangian_(field_theory)
dbo:wikiPageWikiLink
dbr:Onsager–Machlup_function
Subject Item
dbr:Lars_Onsager
dbo:wikiPageWikiLink
dbr:Onsager–Machlup_function
dbo:knownFor
dbr:Onsager–Machlup_function
Subject Item
dbr:Onsager–Machlup_function
rdf:type
yago:StochasticProcess113561896 yago:Abstraction100002137 yago:Function113783816 yago:Content105809192 yago:Idea105833840 yago:Hypothesis105888929 yago:Cognition100023271 yago:Relation100031921 yago:MathematicalRelation113783581 yago:Model105890249 yago:PsychologicalFeature100023100 yago:Concept105835747 yago:WikicatStochasticProcesses yago:WikicatFunctionsAndMappings
rdfs:label
Onsager–Machlup function
rdfs:comment
The Onsager–Machlup function is a function that summarizes the dynamics of a continuous stochastic process. It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system. It is named after Lars Onsager and who were the first to consider such probability densities. The dynamics of a continuous stochastic process X from time t = 0 to t = T in one dimension, satisfying a stochastic differential equation where as ε → 0, where L is the Onsager–Machlup function.
dcterms:subject
dbc:Functional_analysis dbc:Stochastic_processes dbc:Functions_and_mappings
dbo:wikiPageID
38771161
dbo:wikiPageRevisionID
1111095812
dbo:wikiPageWikiLink
dbr:Metric_(mathematics) dbr:Divergence dbr:Girsanov_theorem dbr:Stochastic_differential_equation dbc:Stochastic_processes dbr:Dynamical_system dbr:Functional_integration dbc:Functional_analysis dbr:Euclidean_norm dbr:Ratio dbr:Scalar_curvature dbr:Itō's_lemma dbr:Lars_Onsager dbr:Lagrangian_mechanics dbr:Stochastic_process dbr:Measure_(mathematics) dbr:Tangent_space dbr:Sampling_(statistics) dbc:Functions_and_mappings dbr:Smooth_function dbr:Itō_diffusion dbr:Diffusion_process dbr:Infinitesimal_generator_(stochastic_processes) dbr:Riemannian_manifold dbr:Limit_of_a_sequence dbr:Derivative dbr:Laplace–Beltrami_operator dbr:Real_line dbr:Probability_density_function dbr:Lagrangian_(field_theory) dbr:Wiener_process dbr:Vector_field
dbo:wikiPageExternalLink
n9:index.php%3Ftitle=Onsager-Machlup_function&oldid=22857 n15:1103904077
owl:sameAs
wikidata:Q17104894 n17:fp3W freebase:m.0s9bhzp
dbp:wikiPageUsesTemplate
dbt:! dbt:Mvar dbt:!! dbt:Sfrac dbt:Math dbt:Refbegin dbt:Refend dbt:Reflist dbt:= dbt:Cite_conference dbt:Cite_book dbt:Cite_journal dbt:Interlanguage_link
dbo:abstract
The Onsager–Machlup function is a function that summarizes the dynamics of a continuous stochastic process. It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system. It is named after Lars Onsager and who were the first to consider such probability densities. The dynamics of a continuous stochastic process X from time t = 0 to t = T in one dimension, satisfying a stochastic differential equation where W is a Wiener process, can in approximation be described by the probability density function of its value xi at a finite number of points in time ti: where and Δti = ti+1 − ti > 0, t1 = 0 and tn = T. A similar approximation is possible for processes in higher dimensions. The approximation is more accurate for smaller time step sizes Δti, but in the limit Δti → 0 the probability density function becomes ill defined, one reason being that the product of terms diverges to infinity. In order to nevertheless define a density for the continuous stochastic process X, ratios of probabilities of X lying within a small distance ε from smooth curves φ1 and φ2 are considered: as ε → 0, where L is the Onsager–Machlup function.
prov:wasDerivedFrom
wikipedia-en:Onsager–Machlup_function?oldid=1111095812&ns=0
dbo:wikiPageLength
12429
foaf:isPrimaryTopicOf
wikipedia-en:Onsager–Machlup_function
Subject Item
dbr:List_of_stochastic_processes_topics
dbo:wikiPageWikiLink
dbr:Onsager–Machlup_function
Subject Item
dbr:Onsager-Machlup_function
dbo:wikiPageWikiLink
dbr:Onsager–Machlup_function
dbo:wikiPageRedirects
dbr:Onsager–Machlup_function
Subject Item
wikipedia-en:Onsager–Machlup_function
foaf:primaryTopic
dbr:Onsager–Machlup_function