This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n8https://global.dbpedia.org/id/
n5https://github.com/CQMP/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n12https://spm-lab.github.io/SpM/manual/build/html/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n17https://
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Numerical_analytic_continuation
rdfs:label
Numerical analytic continuation
rdfs:comment
In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations, which often compute Green function values only at imaginary-times or Matsubara frequencies.
dcterms:subject
dbc:Quantum_Monte_Carlo dbc:Mathematical_physics
dbo:wikiPageID
66228158
dbo:wikiPageRevisionID
1119164046
dbo:wikiPageWikiLink
dbr:Fredholm_integral_equation_of_the_first_kind dbr:Regularization_(mathematics) dbc:Quantum_Monte_Carlo dbr:Fermion dbr:Linear_response_function dbr:Matsubara_frequency dbr:Green's_function_(many-body_theory) dbr:Kramers–Kronig_relations dbc:Mathematical_physics dbr:Inverse_Fourier_transform dbr:Fredholm_integral_equation dbr:Many-body_physics dbr:Quantum_Monte_Carlo dbr:Analytic_continuation_along_a_curve dbr:Imaginary_time dbr:Analytic_continuation dbr:Boson
dbo:wikiPageExternalLink
n5:Maxent n12:index.html n17:www.spektra.app
owl:sameAs
n8:FLTKY wikidata:Q105123046
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations, which often compute Green function values only at imaginary-times or Matsubara frequencies. Mathematically, the problem reduces to solving a Fredholm integral equation of the first kind with an ill-conditioned kernel. As a result, it is an ill-posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution. There are different methods for solving this problem including the maximum entropy method, the average spectrum method and Pade approximation methods.
prov:wasDerivedFrom
wikipedia-en:Numerical_analytic_continuation?oldid=1119164046&ns=0
dbo:wikiPageLength
8341
foaf:isPrimaryTopicOf
wikipedia-en:Numerical_analytic_continuation
Subject Item
dbr:Analytic_continuation
dbo:wikiPageWikiLink
dbr:Numerical_analytic_continuation
Subject Item
dbr:Green's_function_(many-body_theory)
dbo:wikiPageWikiLink
dbr:Numerical_analytic_continuation
Subject Item
dbr:Kramers–Kronig_relations
dbo:wikiPageWikiLink
dbr:Numerical_analytic_continuation
Subject Item
dbr:Numerical_Analytic_Continuation
dbo:wikiPageWikiLink
dbr:Numerical_analytic_continuation
dbo:wikiPageRedirects
dbr:Numerical_analytic_continuation
Subject Item
dbr:Quantum_Monte_Carlo
dbo:wikiPageWikiLink
dbr:Numerical_analytic_continuation
Subject Item
dbr:Analytic_continuation_(many-body_theory)
dbo:wikiPageWikiLink
dbr:Numerical_analytic_continuation
dbo:wikiPageRedirects
dbr:Numerical_analytic_continuation
Subject Item
wikipedia-en:Numerical_analytic_continuation
foaf:primaryTopic
dbr:Numerical_analytic_continuation