This HTML5 document contains 61 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n8https://www.ams.org/bookstore-getitem/
n11https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13http://www.cms.math.ca/cjm/v20/
n16https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:George_Glauberman
dbo:wikiPageWikiLink
dbr:Normal_p-complement
Subject Item
dbr:Complement_(group_theory)
dbo:wikiPageWikiLink
dbr:Normal_p-complement
Subject Item
dbr:William_Burnside
dbo:wikiPageWikiLink
dbr:Normal_p-complement
dbp:knownFor
dbr:Normal_p-complement
dbo:knownFor
dbr:Normal_p-complement
Subject Item
dbr:List_of_small_groups
dbo:wikiPageWikiLink
dbr:Normal_p-complement
Subject Item
dbr:List_of_things_named_after_Arthur_Cayley
dbo:wikiPageWikiLink
dbr:Normal_p-complement
Subject Item
dbr:Normal_p-complement
rdf:type
yago:Abstraction100002137 dbo:EthnicGroup yago:WikicatFiniteGroups yago:Group100031264
rdfs:label
Normal p-complement
rdfs:comment
In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.
dct:subject
dbc:Finite_groups
dbo:wikiPageID
21837608
dbo:wikiPageRevisionID
1032096422
dbo:wikiPageWikiLink
dbr:ZJ_theorem dbr:Mathematische_Zeitschrift dbr:Simple_group dbr:Prime_number dbr:Group_theory dbr:Coprime dbr:Cambridge_University_Press dbc:Finite_groups dbr:Sylow_subgroup dbr:Canadian_Journal_of_Mathematics dbr:Finite_group dbr:Cyclic_group dbr:Arthur_Cayley dbr:Thompson_subgroup dbr:Journal_of_Algebra dbr:PSL(2,7) dbr:Normal_subgroup dbr:Semidirect_product
dbo:wikiPageExternalLink
n8:item=CHEL-301-H n13:p1101 n16:theorygroupsfin00burngoog
owl:sameAs
freebase:m.0jwslby n11:4t4oQ yago-res:Normal_p-complement wikidata:Q7051824
dbp:wikiPageUsesTemplate
dbt:Harvtxt dbt:Citation dbt:Harvs
dbo:abstract
In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.
gold:hypernym
dbr:Subgroup
prov:wasDerivedFrom
wikipedia-en:Normal_p-complement?oldid=1032096422&ns=0
dbo:wikiPageLength
5217
foaf:isPrimaryTopicOf
wikipedia-en:Normal_p-complement
Subject Item
dbr:PSL(2,7)
dbo:wikiPageWikiLink
dbr:Normal_p-complement
Subject Item
dbr:P-complement
dbo:wikiPageWikiLink
dbr:Normal_p-complement
dbo:wikiPageRedirects
dbr:Normal_p-complement
Subject Item
dbr:P-nilpotent
dbo:wikiPageWikiLink
dbr:Normal_p-complement
dbo:wikiPageRedirects
dbr:Normal_p-complement
Subject Item
dbr:P-nilpotent_group
dbo:wikiPageWikiLink
dbr:Normal_p-complement
dbo:wikiPageRedirects
dbr:Normal_p-complement
Subject Item
dbr:Glauberman_normal_p-complement_theorem
dbo:wikiPageWikiLink
dbr:Normal_p-complement
dbo:wikiPageRedirects
dbr:Normal_p-complement
Subject Item
dbr:Thompson_normal_p-complement_theorem
dbo:wikiPageWikiLink
dbr:Normal_p-complement
dbo:wikiPageRedirects
dbr:Normal_p-complement
Subject Item
wikipedia-en:Normal_p-complement
foaf:primaryTopic
dbr:Normal_p-complement