This HTML5 document contains 25 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Conditional_expectation
dbo:wikiPageWikiLink
dbr:Non-commutative_conditional_expectation
Subject Item
dbr:Non-commutative_conditional_expectation
rdfs:label
Non-commutative conditional expectation
rdfs:comment
In mathematics, non-commutative conditional expectation is a generalization of the notion of conditional expectation in classical probability. The space of essentially bounded measurable functions on a -finite measure space is the canonical example of a commutative von Neumann algebra. For this reason, the theory of von Neumann algebras is sometimes referred to as noncommutative measure theory. The intimate connections of probability theory with measure theory suggest that one may be able to extend the classical ideas in probability to a noncommutative setting by studying those ideas on general von Neumann algebras.
dct:subject
dbc:Conditional_probability
dbo:wikiPageID
44321373
dbo:wikiPageRevisionID
1067478739
dbo:wikiPageWikiLink
dbr:Mathematics dbr:Probability dbc:Conditional_probability dbr:Probability_theory dbr:Kadison,_R._V. dbr:Abelian_von_Neumann_algebra dbr:Conditional_expectation dbr:C*-algebras dbr:Von_Neumann_algebra
owl:sameAs
wikidata:Q19598150 n7:sXC2 freebase:m.012815c_
dbp:wikiPageUsesTemplate
dbt:More_citations_needed dbt:Reflist
dbo:abstract
In mathematics, non-commutative conditional expectation is a generalization of the notion of conditional expectation in classical probability. The space of essentially bounded measurable functions on a -finite measure space is the canonical example of a commutative von Neumann algebra. For this reason, the theory of von Neumann algebras is sometimes referred to as noncommutative measure theory. The intimate connections of probability theory with measure theory suggest that one may be able to extend the classical ideas in probability to a noncommutative setting by studying those ideas on general von Neumann algebras. For von Neumann algebras with a faithful normal tracial state, for example finite von Neumann algebras, the notion of conditional expectation is especially useful.
prov:wasDerivedFrom
wikipedia-en:Non-commutative_conditional_expectation?oldid=1067478739&ns=0
dbo:wikiPageLength
3172
foaf:isPrimaryTopicOf
wikipedia-en:Non-commutative_conditional_expectation
Subject Item
wikipedia-en:Non-commutative_conditional_expectation
foaf:primaryTopic
dbr:Non-commutative_conditional_expectation