This HTML5 document contains 164 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-ethttp://et.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Multinomial
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageDisambiguates
dbr:Multinomial_logistic_regression
Subject Item
dbr:Multinomial_logistic_regression
rdf:type
yago:Model110324560 yago:CausalAgent100007347 yago:Assistant109815790 yago:Object100002684 yago:Person100007846 yago:YagoLegalActor yago:YagoLegalActorGeo yago:LivingThing100004258 yago:PhysicalEntity100001930 yago:Organism100004475 dbo:Software yago:Worker109632518 yago:WikicatLog-linearModels owl:Thing yago:Whole100003553
rdfs:label
Regresión logística multinomial Multinomiale logistische Regression Multinomial logistic regression
rdfs:comment
En estadística, la regresión logística multinomial generaliza el método de regresión logística para problemas multiclase, es decir, con más de dos posibles resultados discretos.​ Es decir, se trata de un modelo que se utiliza para predecir las probabilidades de los diferentes resultados posibles de una distribución categórica como variable dependiente, dado un conjunto de variables independientes (que pueden ser de valor real, valor binario, categórico-valorado, etc.) In der Statistik ist die multinomiale logistische Regression, auch multinomiale Logit-Regression (MNL), polytome logistische Regression, polychotome logistische Regression, Softmax-Regression oder Maximum-Entropie-Klassifikator genannt, ein regressionsanalytisches Verfahren. Sie „dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür.“ Die Antwortvariable (auch abhängige Variable, AV) ist dabei eine nominalskalierte Variable (Unterform der kategorialen Variable, bei der die Kategorien nicht in eine sinnvolle Reihenfolge zu bringen sind). Im Falle einer ordinalskalierten AV (ebenfalls kategorial, aber in Reihenfolge mit gleichmäßigen Abständen zwischen den Kategorien zu bringen) spricht man von einer . Bei gegebener verhältnis- oder intervallskal In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
rdfs:seeAlso
dbr:Logistic_regression
dcterms:subject
dbc:Logistic_regression dbc:Classification_algorithms dbc:Regression_models
dbo:wikiPageID
4433814
dbo:wikiPageRevisionID
1122154254
dbo:wikiPageWikiLink
dbr:Independent_identically_distributed dbr:Perceptron dbr:Independent_variable dbr:Nonidentifiable dbc:Logistic_regression dbr:Logistic_regression dbr:Categorical_distribution dbr:Statistical_classification dbr:Logistic_distribution dbr:Scale_parameter dbr:Smooth_function dbr:Error_propagation dbr:Utility dbr:Softmax_activation_function dbr:Probability_distribution dbr:Iteratively_reweighted_least_squares dbr:Blood_pressure dbr:Identifiability dbr:Multiclass_classification dbr:Predictive_modelling dbr:Compositional_data dbr:Dependent_variable dbr:Gaussian_distribution dbr:Support_vector_machine dbr:Regression_coefficient dbr:Maximum_likelihood dbr:Normalization_factor dbr:Nested_logit dbr:Coordinate_descent dbr:Continuous_variable dbr:Statistical_independence dbr:Probability dbr:Extreme_value_distribution dbr:Multinomial_probit dbr:Hepatitis dbr:Categorical_variable dbr:Regularization_(mathematics) dbr:Partition_function_(mathematics) dbr:Weighted_average dbr:Binary_variable dbr:Latent_variable dbr:Level_of_measurement dbr:Logarithm dbr:Naive_Bayes_classifier dbr:Generalized_iterative_scaling dbr:Gradient-based_optimization dbr:Order_statistic dbr:Logistic_function dbc:Classification_algorithms dbr:Perfect_substitute dbc:Regression_models dbr:Discrete_choice dbr:Indicator_function dbr:Natural_language_processing dbr:Dot_product dbr:Mathematical_optimization dbr:Differentiation_(mathematics) dbr:Maximum_a_posteriori dbr:Gibbs_measure dbr:L-BFGS dbr:Odds_ratio dbr:Statistics dbr:Softmax_function dbr:Linear_discriminant_analysis dbr:Linear_combination dbr:Random_variable dbr:Independence_of_irrelevant_alternatives dbr:Location_parameter dbr:Multicollinearity dbr:Prior_distribution dbr:Linear_predictor_function dbr:Statistically_independent
owl:sameAs
dbpedia-de:Multinomiale_logistische_Regression yago-res:Multinomial_logistic_regression dbpedia-et:Multinomiaalne_logistiline_regressioon dbpedia-es:Regresión_logística_multinomial n17:ckkf freebase:m.0c24n5 wikidata:Q1650843
dbp:wikiPageUsesTemplate
dbt:Redirect dbt:Regression_bar dbt:Citation_needed dbt:Refimprove dbt:Reflist dbt:Short_description dbt:See_also
dbo:abstract
En estadística, la regresión logística multinomial generaliza el método de regresión logística para problemas multiclase, es decir, con más de dos posibles resultados discretos.​ Es decir, se trata de un modelo que se utiliza para predecir las probabilidades de los diferentes resultados posibles de una distribución categórica como variable dependiente, dado un conjunto de variables independientes (que pueden ser de valor real, valor binario, categórico-valorado, etc.) La regresión logística multinomial se conoce por una variedad de otros nombres, incluyendo regresión multiclase LR, la regresión multinomial,​ función SoftMax regression, Logit multinomial, clasificador de máxima entropía (MaxEnt), etc.​ In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.). Multinomial logistic regression is known by a variety of other names, including polytomous LR, multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. In der Statistik ist die multinomiale logistische Regression, auch multinomiale Logit-Regression (MNL), polytome logistische Regression, polychotome logistische Regression, Softmax-Regression oder Maximum-Entropie-Klassifikator genannt, ein regressionsanalytisches Verfahren. Sie „dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür.“ Die Antwortvariable (auch abhängige Variable, AV) ist dabei eine nominalskalierte Variable (Unterform der kategorialen Variable, bei der die Kategorien nicht in eine sinnvolle Reihenfolge zu bringen sind). Im Falle einer ordinalskalierten AV (ebenfalls kategorial, aber in Reihenfolge mit gleichmäßigen Abständen zwischen den Kategorien zu bringen) spricht man von einer . Bei gegebener verhältnis- oder intervallskalierter AV kann dagegen eine (Multiple) Lineare Regression gerechnet werden.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Multinomial_logistic_regression?oldid=1122154254&ns=0
dbo:wikiPageLength
32552
foaf:isPrimaryTopicOf
wikipedia-en:Multinomial_logistic_regression
Subject Item
dbr:Naive_Bayes_classifier
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Information_extraction
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Limited-memory_BFGS
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:MNL_model
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Generalized_iterative_scaling
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Generalized_linear_model
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Mlogit
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Multiclass_classification
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Logistic_function
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Choice_modelling
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Compositional_data
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Pattern_recognition
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Western_Hunter-Gatherer
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Linear_regression
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Logistic_regression
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Cheddar_Man
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Random_forest
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:HeuristicLab
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Hyperbolastic_functions
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Boltzmann_distribution
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Softmax_function
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Maxent_model
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Categorical_variable
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Maximum_entropy_classifier
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Vector_generalized_linear_model
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
Subject Item
dbr:Polytomous_logistic_regression
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Softmax_regression
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Multinomial_logit
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Multinomial_logit_model
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
dbr:Multinomial_regression
dbo:wikiPageWikiLink
dbr:Multinomial_logistic_regression
dbo:wikiPageRedirects
dbr:Multinomial_logistic_regression
Subject Item
wikipedia-en:Multinomial_logistic_regression
foaf:primaryTopic
dbr:Multinomial_logistic_regression