This HTML5 document contains 53 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n18http://joophox.net/publist/
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Kelvyn_Jones
dbo:wikiPageWikiLink
dbr:Multilevel_modeling_for_repeated_measures
Subject Item
dbr:Multilevel_Modeling_for_Repeated_Measures
dbo:wikiPageWikiLink
dbr:Multilevel_modeling_for_repeated_measures
dbo:wikiPageRedirects
dbr:Multilevel_modeling_for_repeated_measures
Subject Item
dbr:Multilevel_modeling_for_repeated_measures
rdf:type
yago:WikicatStatisticalModels yago:Object100002684 yago:Whole100003553 yago:Person100007846 yago:LivingThing100004258 yago:YagoLegalActor yago:YagoLegalActorGeo yago:Worker109632518 yago:CausalAgent100007347 yago:PhysicalEntity100001930 yago:Organism100004475 yago:Model110324560 dbo:Work yago:Assistant109815790
rdfs:label
Multilevel modeling for repeated measures
rdfs:comment
One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.
dcterms:subject
dbc:Regression_models
dbo:wikiPageID
35639275
dbo:wikiPageRevisionID
985669335
dbo:wikiPageWikiLink
dbr:Latent_growth_modeling dbc:Regression_models dbr:Growth_curve_(statistics) dbr:Homoscedasticity dbr:Multilevel_model dbr:RM-ANOVA dbr:Repeated_measures_design dbr:Missing_data dbr:Slope dbr:Repeated_measures dbr:Sphericity dbr:Y-intercept dbr:Link_function dbr:Structural_equation_modeling dbr:Longitudinal_study dbr:Multilevel_modeling dbr:Statistical_assumptions
dbo:wikiPageExternalLink
n18:ebs05.pdf%7Cedition=
owl:sameAs
wikidata:Q6934736 yago-res:Multilevel_modeling_for_repeated_measures n17:4ryjo freebase:m.0jky21d
dbp:wikiPageUsesTemplate
dbt:Cite_journal dbt:Cite_book dbt:Reflist
dbo:abstract
One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor. In multilevel modeling, an overall change function (e.g. linear, quadratic, cubic etc.) is fitted to the whole sample and, just as in multilevel modeling for clustered data, the slope and intercept may be allowed to vary. For example, in a study looking at income growth with age, individuals might be assumed to show linear improvement over time. However, the exact intercept and slope could be allowed to vary across individuals (i.e. defined as random coefficients). Multilevel modeling with repeated measures employs the same statistical techniques as MLM with clustered data. In multilevel modeling for repeated measures data, the measurement occasions are nested within cases (e.g. individual or subject). Thus, level-1 units consist of the repeated measures for each subject, and the level-2 unit is the individual or subject. In addition to estimating overall parameter estimates, MLM allows regression equations at the level of the individual. Thus, as a growth curve modeling technique, it allows the estimation of inter-individual differences in intra-individual change over time by modeling the variances and covariances. In other words, it allows the testing of individual differences in patterns of responses over time (i.e. growth curves). This characteristic of multilevel modeling makes it preferable to other repeated measures statistical techniques such as repeated measures-analysis of variance for certain research questions.
gold:hypernym
dbr:Analysis
prov:wasDerivedFrom
wikipedia-en:Multilevel_modeling_for_repeated_measures?oldid=985669335&ns=0
dbo:wikiPageLength
18020
foaf:isPrimaryTopicOf
wikipedia-en:Multilevel_modeling_for_repeated_measures
Subject Item
wikipedia-en:Multilevel_modeling_for_repeated_measures
foaf:primaryTopic
dbr:Multilevel_modeling_for_repeated_measures