This HTML5 document contains 53 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Multidimensional_Chebyshev's_inequality
rdf:type
yago:Attribute100024264 yago:Inequality104752221 yago:Quality104723816 yago:Abstraction100002137 yago:Difference104748836 yago:WikicatStatisticalInequalities yago:WikicatProbabilisticInequalities
rdfs:label
Mehrdimensionale Tschebyscheffsche Ungleichung Multidimensional Chebyshev's inequality
rdfs:comment
In probability theory, the multidimensional Chebyshev's inequality is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount. Let be an -dimensional random vector with expected value and covariance matrix If is a positive-definite matrix, for any real number : Die Mehrdimensionale Tschebyscheffsche Ungleichung ist eine Ungleichung aus dem Bereich der Stochastik. Sie ist eine Verallgemeinerung der Tschebyscheff-Ungleichung und nach dem Mathematiker Pafnuti Lwowitsch Tschebyschow benannt.
dct:subject
dbc:Statistical_inequalities dbc:Probabilistic_inequalities
dbo:wikiPageID
18729342
dbo:wikiPageRevisionID
1118186241
dbo:wikiPageWikiLink
dbr:Chebyshev's_inequality dbr:Pettis_integral dbr:Real_number dbr:Strong_order_two dbr:Markov's_inequality dbr:Random_variable dbr:Expected_value dbr:Probability_theory dbc:Statistical_inequalities dbr:Positive-definite_matrix dbr:Hilbert_space dbr:Banach_space dbr:Fréchet_space dbr:Vakhania dbr:Random_vector dbr:Covariance_matrix dbc:Probabilistic_inequalities
owl:sameAs
wikidata:Q6934653 yago-res:Multidimensional_Chebyshev's_inequality dbpedia-de:Mehrdimensionale_Tschebyscheffsche_Ungleichung freebase:m.04gmcpz n18:4rswq
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Mvar dbt:More_references dbt:!! dbt:Math dbt:=
dbo:abstract
Die Mehrdimensionale Tschebyscheffsche Ungleichung ist eine Ungleichung aus dem Bereich der Stochastik. Sie ist eine Verallgemeinerung der Tschebyscheff-Ungleichung und nach dem Mathematiker Pafnuti Lwowitsch Tschebyschow benannt. In probability theory, the multidimensional Chebyshev's inequality is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount. Let be an -dimensional random vector with expected value and covariance matrix If is a positive-definite matrix, for any real number :
prov:wasDerivedFrom
wikipedia-en:Multidimensional_Chebyshev's_inequality?oldid=1118186241&ns=0
dbo:wikiPageLength
4505
foaf:isPrimaryTopicOf
wikipedia-en:Multidimensional_Chebyshev's_inequality
Subject Item
dbr:Chebyshev's_inequality
dbo:wikiPageWikiLink
dbr:Multidimensional_Chebyshev's_inequality
Subject Item
dbr:Catalog_of_articles_in_probability_theory
dbo:wikiPageWikiLink
dbr:Multidimensional_Chebyshev's_inequality
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Multidimensional_Chebyshev's_inequality
Subject Item
dbr:List_of_things_named_after_Pafnuty_Chebyshev
dbo:wikiPageWikiLink
dbr:Multidimensional_Chebyshev's_inequality
Subject Item
wikipedia-en:Multidimensional_Chebyshev's_inequality
foaf:primaryTopic
dbr:Multidimensional_Chebyshev's_inequality