This HTML5 document contains 26 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Index_of_combinatorics_articles
dbo:wikiPageWikiLink
dbr:Matroid_embedding
Subject Item
dbr:Matroid
dbo:wikiPageWikiLink
dbr:Matroid_embedding
Subject Item
dbr:Matroid_embedding
rdfs:label
Matroid embedding
rdfs:comment
In combinatorics, a matroid embedding is a set system (F, E), where F is a collection of feasible sets, that satisfies the following properties. 1. * Accessibility property: Every non-empty feasible set X contains an element x such that X \ {x} is feasible. 2. * Extensibility property: For every feasible subset X of a basis (i.e., maximal feasible set) B, some element in B but not in X belongs to the extension ext(X) of X, where ext(X) is the set of all elements e not in X such that X ∪ {e} is feasible. 3. * Closure–congruence property: For every superset A of a feasible set X disjoint from ext(X), A ∪ {e} is contained in some feasible set for either all e or no e in ext(X). 4. * The collection of all subsets of feasible sets forms a matroid.
dct:subject
dbc:Matroid_theory
dbo:wikiPageID
735426
dbo:wikiPageRevisionID
1119299793
dbo:wikiPageWikiLink
dbr:Matroid dbr:SIAM_Journal_on_Discrete_Mathematics dbc:Matroid_theory dbr:Superset dbr:Greedy_algorithm dbr:Set_system dbr:Combinatorics
owl:sameAs
wikidata:Q6787902 freebase:m.036wmd n15:4rUaK
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Short_description dbt:Harvtxt
dbo:abstract
In combinatorics, a matroid embedding is a set system (F, E), where F is a collection of feasible sets, that satisfies the following properties. 1. * Accessibility property: Every non-empty feasible set X contains an element x such that X \ {x} is feasible. 2. * Extensibility property: For every feasible subset X of a basis (i.e., maximal feasible set) B, some element in B but not in X belongs to the extension ext(X) of X, where ext(X) is the set of all elements e not in X such that X ∪ {e} is feasible. 3. * Closure–congruence property: For every superset A of a feasible set X disjoint from ext(X), A ∪ {e} is contained in some feasible set for either all e or no e in ext(X). 4. * The collection of all subsets of feasible sets forms a matroid. Matroid embedding was introduced by to characterize problems that can be optimized by a greedy algorithm.
gold:hypernym
dbr:System
prov:wasDerivedFrom
wikipedia-en:Matroid_embedding?oldid=1119299793&ns=0
dbo:wikiPageLength
1628
foaf:isPrimaryTopicOf
wikipedia-en:Matroid_embedding
Subject Item
wikipedia-en:Matroid_embedding
foaf:primaryTopic
dbr:Matroid_embedding