In combinatorics, a matroid embedding is a set system (F, E), where F is a collection of feasible sets, that satisfies the following properties. 1. * Accessibility property: Every non-empty feasible set X contains an element x such that X \ {x} is feasible. 2. * Extensibility property: For every feasible subset X of a basis (i.e., maximal feasible set) B, some element in B but not in X belongs to the extension ext(X) of X, where ext(X) is the set of all elements e not in X such that X ∪ {e} is feasible. 3. * Closure–congruence property: For every superset A of a feasible set X disjoint from ext(X), A ∪ {e} is contained in some feasible set for either all e or no e in ext(X). 4. * The collection of all subsets of feasible sets forms a matroid.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |