An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In combinatorics, a matroid embedding is a set system (F, E), where F is a collection of feasible sets, that satisfies the following properties. 1. * Accessibility property: Every non-empty feasible set X contains an element x such that X \ {x} is feasible. 2. * Extensibility property: For every feasible subset X of a basis (i.e., maximal feasible set) B, some element in B but not in X belongs to the extension ext(X) of X, where ext(X) is the set of all elements e not in X such that X ∪ {e} is feasible. 3. * Closure–congruence property: For every superset A of a feasible set X disjoint from ext(X), A ∪ {e} is contained in some feasible set for either all e or no e in ext(X). 4. * The collection of all subsets of feasible sets forms a matroid.

Property Value
dbo:abstract
  • In combinatorics, a matroid embedding is a set system (F, E), where F is a collection of feasible sets, that satisfies the following properties. 1. * Accessibility property: Every non-empty feasible set X contains an element x such that X \ {x} is feasible. 2. * Extensibility property: For every feasible subset X of a basis (i.e., maximal feasible set) B, some element in B but not in X belongs to the extension ext(X) of X, where ext(X) is the set of all elements e not in X such that X ∪ {e} is feasible. 3. * Closure–congruence property: For every superset A of a feasible set X disjoint from ext(X), A ∪ {e} is contained in some feasible set for either all e or no e in ext(X). 4. * The collection of all subsets of feasible sets forms a matroid. Matroid embedding was introduced by to characterize problems that can be optimized by a greedy algorithm. (en)
dbo:wikiPageID
  • 735426 (xsd:integer)
dbo:wikiPageLength
  • 1628 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119299793 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In combinatorics, a matroid embedding is a set system (F, E), where F is a collection of feasible sets, that satisfies the following properties. 1. * Accessibility property: Every non-empty feasible set X contains an element x such that X \ {x} is feasible. 2. * Extensibility property: For every feasible subset X of a basis (i.e., maximal feasible set) B, some element in B but not in X belongs to the extension ext(X) of X, where ext(X) is the set of all elements e not in X such that X ∪ {e} is feasible. 3. * Closure–congruence property: For every superset A of a feasible set X disjoint from ext(X), A ∪ {e} is contained in some feasible set for either all e or no e in ext(X). 4. * The collection of all subsets of feasible sets forms a matroid. (en)
rdfs:label
  • Matroid embedding (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License