This HTML5 document contains 51 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://www.digizeitschriften.de/resolveppn/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n16http://apps.nrbook.com/bateman/

Statements

Subject Item
dbr:MacRobert_E_function
rdf:type
yago:WikicatHypergeometricFunctions yago:Function113783816 yago:WikicatSpecialFunctions yago:Equation106669864 yago:Message106598915 yago:Relation100031921 yago:DifferentialEquation106670521 yago:Communication100033020 yago:WikicatDifferentialEquations yago:Statement106722453 yago:MathematicalStatement106732169 yago:Abstraction100002137 yago:MathematicalRelation113783581
rdfs:label
Funzione E di MacRobert MacRobert E function
rdfs:comment
La funzione E fu definita da Thomas Murray MacRobert nel 1938 per generalizzare la funzione ipergeometrica generalizzata al caso . Lo scopo finale era quello di introdurre una funzione talmente generale che potesse includere come caso particolare la maggioranza delle funzioni speciali note fino ad allora. Tuttavia tale funzione non ha avuto grande seguito in letteratura perché può essere sempre espressa in termini della funzione G di Meijer, mentre non è vero il contrario, quindi la funzione G ha validità ancora più generale. In mathematics, the E-function was introduced by Thomas Murray MacRobert to extend the generalized hypergeometric series pFq(·) to the case p > q + 1. The underlying objective was to define a very general function that includes as particular cases the majority of the special functions known until then. However, this function had no great impact on the literature as it can always be expressed in terms of the Meijer G-function, while the opposite is not true, so that the G-function is of a still more general nature. It is defined as:
dcterms:subject
dbc:Hypergeometric_functions
dbo:wikiPageID
23618631
dbo:wikiPageRevisionID
1108573519
dbo:wikiPageWikiLink
dbc:Hypergeometric_functions dbr:Meijer_G-function dbr:Special_function dbr:Academic_Press,_Inc. dbr:Generalized_hypergeometric_function
dbo:wikiPageExternalLink
n4:GDZPPN00229060X n16:Vol1.pdf
owl:sameAs
freebase:m.06zs1zt yago-res:MacRobert_E_function wikidata:Q3754514 n18:3TsfY dbpedia-it:Funzione_E_di_MacRobert
dbp:wikiPageUsesTemplate
dbt:Harvs dbt:Cite_journal dbt:Mathworld dbt:Cite_book
dbp:authorlink
Thomas Murray MacRobert
dbp:first
Thomas Murray
dbp:last
MacRobert
dbp:title
MacRobert's E-Function
dbp:urlname
MacRobertsE-Function
dbp:year
1937
dbo:abstract
La funzione E fu definita da Thomas Murray MacRobert nel 1938 per generalizzare la funzione ipergeometrica generalizzata al caso . Lo scopo finale era quello di introdurre una funzione talmente generale che potesse includere come caso particolare la maggioranza delle funzioni speciali note fino ad allora. Tuttavia tale funzione non ha avuto grande seguito in letteratura perché può essere sempre espressa in termini della funzione G di Meijer, mentre non è vero il contrario, quindi la funzione G ha validità ancora più generale. In mathematics, the E-function was introduced by Thomas Murray MacRobert to extend the generalized hypergeometric series pFq(·) to the case p > q + 1. The underlying objective was to define a very general function that includes as particular cases the majority of the special functions known until then. However, this function had no great impact on the literature as it can always be expressed in terms of the Meijer G-function, while the opposite is not true, so that the G-function is of a still more general nature. It is defined as:
prov:wasDerivedFrom
wikipedia-en:MacRobert_E_function?oldid=1108573519&ns=0
dbo:wikiPageLength
5375
foaf:isPrimaryTopicOf
wikipedia-en:MacRobert_E_function
Subject Item
dbr:Thomas_Murray_MacRobert
dbo:wikiPageWikiLink
dbr:MacRobert_E_function
Subject Item
dbr:MacRobert_E-function
dbo:wikiPageWikiLink
dbr:MacRobert_E_function
dbo:wikiPageRedirects
dbr:MacRobert_E_function
Subject Item
wikipedia-en:MacRobert_E_function
foaf:primaryTopic
dbr:MacRobert_E_function