This HTML5 document contains 48 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n19http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
n5https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n8http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Lebesgue's_universal_covering_problem
rdfs:label
Задача Лебега Lebesgue's universal covering problem
rdfs:comment
Lebesgue's universal covering problem is an unsolved problem in geometry that asks for the convex shape of smallest area that can cover every planar set of diameter one. The diameter of a set by definition is the least upper bound of the distances between all pairs of points in the set. A shape covers a set if it contains a congruent subset. In other words the set may be rotated, translated or reflected to fit inside the shape. Unsolved problem in mathematics: What is the minimum area of a convex shape that can cover every planar set of diameter one? (more unsolved problems in mathematics) Задача Лебега состоит в отыскании плоской фигуры наименьшей площади, которая способна накрыть собой любую плоскую фигуру диаметра 1.
foaf:depiction
n8:Lebesgue-circle-triangle.svg n8:Pál's_solution_to_Lebesgue's_universal_covering_problem.svg
dcterms:subject
dbc:Unsolved_problems_in_geometry dbc:Discrete_geometry
dbo:wikiPageID
52153555
dbo:wikiPageRevisionID
1122470525
dbo:wikiPageWikiLink
dbr:Gyula_Pál dbr:Blaschke_selection_theorem dbr:Hexagon dbr:Convex_set dbr:Kakeya_set dbr:Moving_sofa_problem dbr:Diameter dbc:Discrete_geometry dbc:Unsolved_problems_in_geometry dbr:Geometry dbr:Roland_Sprague dbr:Henri_Lebesgue n19:Lebesgue-circle-triangle.svg dbr:Moser's_worm_problem n19:Pál's_solution_to_Lebesgue's_universal_covering_problem.svg dbr:John_C._Baez dbr:Curve_of_constant_width dbr:ArXiv
owl:sameAs
n5:2eEqT dbpedia-ru:Задача_Лебега yago-res:Lebesgue's_universal_covering_problem wikidata:Q28456108 dbpedia-hu:Lebesgue_univerzális_fedési_problémája
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Unsolved dbt:Other_uses_of
dbo:thumbnail
n8:Lebesgue-circle-triangle.svg?width=300
dbo:abstract
Lebesgue's universal covering problem is an unsolved problem in geometry that asks for the convex shape of smallest area that can cover every planar set of diameter one. The diameter of a set by definition is the least upper bound of the distances between all pairs of points in the set. A shape covers a set if it contains a congruent subset. In other words the set may be rotated, translated or reflected to fit inside the shape. Unsolved problem in mathematics: What is the minimum area of a convex shape that can cover every planar set of diameter one? (more unsolved problems in mathematics) The problem was posed by Henri Lebesgue in a letter to Gyula Pál in 1914. It was published in a paper by Pál in 1920 along with Pál's analysis. He showed that a cover for all curves of constant width one is also a cover for all sets of diameter one and that a cover can be constructed by taking a regular hexagon with an inscribed circle of diameter one and removing two corners from the hexagon to give a cover of area . Задача Лебега состоит в отыскании плоской фигуры наименьшей площади, которая способна накрыть собой любую плоскую фигуру диаметра 1.
prov:wasDerivedFrom
wikipedia-en:Lebesgue's_universal_covering_problem?oldid=1122470525&ns=0
dbo:wikiPageLength
5335
foaf:isPrimaryTopicOf
wikipedia-en:Lebesgue's_universal_covering_problem
Subject Item
dbr:Henri_Lebesgue
dbo:wikiPageWikiLink
dbr:Lebesgue's_universal_covering_problem
Subject Item
dbr:Blaschke_selection_theorem
dbo:wikiPageWikiLink
dbr:Lebesgue's_universal_covering_problem
Subject Item
dbr:List_of_things_named_after_Henri_Lebesgue
dbo:wikiPageWikiLink
dbr:Lebesgue's_universal_covering_problem
Subject Item
dbr:List_of_unsolved_problems_in_mathematics
dbo:wikiPageWikiLink
dbr:Lebesgue's_universal_covering_problem
Subject Item
dbr:Moser's_worm_problem
dbo:wikiPageWikiLink
dbr:Lebesgue's_universal_covering_problem
Subject Item
wikipedia-en:Lebesgue's_universal_covering_problem
foaf:primaryTopic
dbr:Lebesgue's_universal_covering_problem