This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Fulkerson–Chen–Anstee_theorem
dbo:wikiPageWikiLink
dbr:Kleitman–Wang_algorithms
Subject Item
dbr:Daniel_Kleitman
dbo:wikiPageWikiLink
dbr:Kleitman–Wang_algorithms
Subject Item
dbr:Digraph_realization_problem
dbo:wikiPageWikiLink
dbr:Kleitman–Wang_algorithms
Subject Item
dbr:Kleitman-Wang_algorithm
dbo:wikiPageWikiLink
dbr:Kleitman–Wang_algorithms
dbo:wikiPageRedirects
dbr:Kleitman–Wang_algorithms
Subject Item
dbr:Kleitman–Wang_algorithms
rdfs:label
Kleitman–Wang algorithms
rdfs:comment
The Kleitman–Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called digraphic. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer. These constructions are based on recursive algorithms. Kleitman and Wang gave these algorithms in 1973.
dcterms:subject
dbc:Graph_algorithms
dbo:wikiPageID
43237093
dbo:wikiPageRevisionID
1067657052
dbo:wikiPageWikiLink
dbr:Enumeration dbr:Graph_theory dbr:Digraph_realization_problem dbc:Graph_algorithms dbr:Fulkerson–Chen–Anstee_theorem dbr:Nonincreasing dbr:Lexicographical_order dbr:List_(abstract_data_type) dbr:Recursion_(computer_science) dbr:Directed_graph dbr:Integer
owl:sameAs
wikidata:Q18343454 n13:mT1w freebase:m.011l95gj
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Citation dbt:Reflist
dbo:abstract
The Kleitman–Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called digraphic. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer. These constructions are based on recursive algorithms. Kleitman and Wang gave these algorithms in 1973.
gold:hypernym
dbr:Algorithms
prov:wasDerivedFrom
wikipedia-en:Kleitman–Wang_algorithms?oldid=1067657052&ns=0
dbo:wikiPageLength
4242
foaf:isPrimaryTopicOf
wikipedia-en:Kleitman–Wang_algorithms
Subject Item
dbr:Kleitman-Wang_algorithms
dbo:wikiPageWikiLink
dbr:Kleitman–Wang_algorithms
dbo:wikiPageRedirects
dbr:Kleitman–Wang_algorithms
Subject Item
dbr:Kleitman–Wang_algorithm
dbo:wikiPageWikiLink
dbr:Kleitman–Wang_algorithms
dbo:wikiPageRedirects
dbr:Kleitman–Wang_algorithms
Subject Item
wikipedia-en:Kleitman–Wang_algorithms
foaf:primaryTopic
dbr:Kleitman–Wang_algorithms