This HTML5 document contains 30 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n7http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Ergodic_theory
dbo:wikiPageWikiLink
dbr:Kingman's_subadditive_ergodic_theorem
Subject Item
dbr:John_Kingman
dbo:wikiPageWikiLink
dbr:Kingman's_subadditive_ergodic_theorem
dbp:knownFor
dbr:Kingman's_subadditive_ergodic_theorem
Subject Item
dbr:Kingman's_subadditive_ergodic_theorem
rdfs:label
Kingman's subadditive ergodic theorem
rdfs:comment
In mathematics, Kingman's subadditive ergodic theorem is one of several ergodic theorems. It can be seen as a generalization of Birkhoff's ergodic theorem.Intuitively, the subadditive ergodic theorem is a kind of random variable version of Fekete's lemma (hence the name ergodic). As a result, it can be rephrased in the language of probability, e.g. using a sequence of random variables and expected values. The theorem is named after John Kingman.
dcterms:subject
dbc:Ergodic_theory
dbo:wikiPageID
43597724
dbo:wikiPageRevisionID
1076890977
dbo:wikiPageWikiLink
dbr:Measure-preserving_dynamical_system dbr:Random_variables dbr:Subadditivity dbr:John_Kingman dbc:Ergodic_theory dbr:Expected_value dbr:Percolation_theory dbr:Ergodic_theory dbr:Lyapunov_exponent dbr:Ergodicity dbr:Probability_space
dbo:wikiPageExternalLink
n7:Steele_AIHPB_1989.pdf
owl:sameAs
wikidata:Q22906153 n14:2AHCf freebase:m.012kx013
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In mathematics, Kingman's subadditive ergodic theorem is one of several ergodic theorems. It can be seen as a generalization of Birkhoff's ergodic theorem.Intuitively, the subadditive ergodic theorem is a kind of random variable version of Fekete's lemma (hence the name ergodic). As a result, it can be rephrased in the language of probability, e.g. using a sequence of random variables and expected values. The theorem is named after John Kingman.
gold:hypernym
dbr:Theorems
prov:wasDerivedFrom
wikipedia-en:Kingman's_subadditive_ergodic_theorem?oldid=1076890977&ns=0
dbo:wikiPageLength
2108
foaf:isPrimaryTopicOf
wikipedia-en:Kingman's_subadditive_ergodic_theorem
Subject Item
wikipedia-en:Kingman's_subadditive_ergodic_theorem
foaf:primaryTopic
dbr:Kingman's_subadditive_ergodic_theorem