This HTML5 document contains 49 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:K-independent_hashing
dbo:wikiPageWikiLink
dbr:Karloff–Zwick_algorithm
Subject Item
dbr:Karloff–Zwick_algorithm
rdf:type
yago:YagoPermanentlyLocatedEntity yago:Procedure101023820 dbo:Software yago:Abstraction100002137 yago:Event100029378 yago:Act100030358 yago:Algorithm105847438 yago:PsychologicalFeature100023100 yago:Rule105846932 yago:WikicatApproximationAlgorithms yago:Activity100407535
rdfs:label
Karloff–Zwick algorithm
rdfs:comment
The Karloff–Zwick algorithm, in computational complexity theory, is a randomised approximation algorithm taking an instance of MAX-3SAT Boolean satisfiability problem as input. If the instance is satisfiable, then the expected weight of the assignment found is at least 7/8 of optimal. There is strong evidence (but not a mathematical proof) that the algorithm achieves 7/8 of optimal even on unsatisfiable MAX-3SAT instances. and Uri Zwick presented the algorithm in 1997.
dcterms:subject
dbc:Randomized_algorithms dbc:Approximation_algorithms
dbo:wikiPageID
3199764
dbo:wikiPageRevisionID
1112157245
dbo:wikiPageWikiLink
dbr:Howard_Karloff dbr:Computational_complexity_theory dbr:Approximation_algorithm dbr:Polynomial-time dbr:Boolean_satisfiability_problem dbr:Johan_Håstad dbr:PCP_theorem dbr:Mathematical_proof dbr:Randomized_algorithm dbr:MAX-3SAT dbr:Uri_Zwick dbr:Method_of_conditional_probabilities dbc:Randomized_algorithms dbc:Approximation_algorithms dbr:Semidefinite_programming
owl:sameAs
wikidata:Q6372543 n12:4pFQm freebase:m.08ysxt
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
The Karloff–Zwick algorithm, in computational complexity theory, is a randomised approximation algorithm taking an instance of MAX-3SAT Boolean satisfiability problem as input. If the instance is satisfiable, then the expected weight of the assignment found is at least 7/8 of optimal. There is strong evidence (but not a mathematical proof) that the algorithm achieves 7/8 of optimal even on unsatisfiable MAX-3SAT instances. and Uri Zwick presented the algorithm in 1997. The algorithm is based on semidefinite programming. It can be derandomized using, e.g., the techniques from to yield a deterministic polynomial-time algorithm with the same approximation guarantees.
gold:hypernym
dbr:Algorithm
prov:wasDerivedFrom
wikipedia-en:Karloff–Zwick_algorithm?oldid=1112157245&ns=0
dbo:wikiPageLength
3080
foaf:isPrimaryTopicOf
wikipedia-en:Karloff–Zwick_algorithm
Subject Item
dbr:Boolean_satisfiability_problem
dbo:wikiPageWikiLink
dbr:Karloff–Zwick_algorithm
Subject Item
dbr:Uri_Zwick
dbo:wikiPageWikiLink
dbr:Karloff–Zwick_algorithm
Subject Item
dbr:Zwick
dbo:wikiPageWikiLink
dbr:Karloff–Zwick_algorithm
dbo:wikiPageDisambiguates
dbr:Karloff–Zwick_algorithm
Subject Item
dbr:Karloff-Zwick_algorithm
dbo:wikiPageWikiLink
dbr:Karloff–Zwick_algorithm
dbo:wikiPageRedirects
dbr:Karloff–Zwick_algorithm
Subject Item
wikipedia-en:Karloff–Zwick_algorithm
foaf:primaryTopic
dbr:Karloff–Zwick_algorithm