This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Introduction_to_Commutative_Algebra
rdf:type
yago:Textbook106414372 yago:Whole100003553 yago:Creation103129123 yago:WikicatMathematicsTextbooks yago:Publication106589574 yago:Artifact100021939 yago:Product104007894 yago:Object100002684 yago:Work104599396 yago:Wikicat1969Books yago:PhysicalEntity100001930 yago:Book106410904 dbo:Book
rdfs:label
Introduction to Commutative Algebra
rdfs:comment
Introduction to Commutative Algebra is a well-known commutative algebra textbook written by Michael Atiyah and Ian G. Macdonald. It deals with elementary concepts of commutative algebra including localization, primary decomposition, integral dependence, Noetherian and Artinian rings and modules, Dedekind rings, completions and a moderate amount of dimension theory. It is notable for being among the shorter English-language introductory textbooks in the subject, relegating a good deal of material to the exercises. (Hardcover 1969, ISBN 0-201-00361-9) (Paperback 1994, ISBN 0-201-40751-5)
dcterms:subject
dbc:1969_non-fiction_books dbc:Commutative_algebra dbc:Mathematics_textbooks
dbo:wikiPageID
8122079
dbo:wikiPageRevisionID
927667458
dbo:wikiPageWikiLink
dbr:Integrality dbc:Commutative_algebra dbr:Module_(mathematics) dbr:Primary_decomposition dbr:Completion_(ring_theory) dbr:Noetherian_ring dbr:Artinian_ring dbr:Krull_dimension dbr:Commutative_algebra dbr:Ian_G._Macdonald dbr:Ring_(mathematics) dbc:1969_non-fiction_books dbr:Dedekind_ring dbr:Localization_of_a_ring dbr:Textbook dbr:Michael_Atiyah dbc:Mathematics_textbooks dbr:Exercise_(mathematics)
owl:sameAs
n10:4npTd wikidata:Q6058914 freebase:m.026sd9l yago-res:Introduction_to_Commutative_Algebra
dbp:wikiPageUsesTemplate
dbt:Italic_title dbt:ISBN dbt:Mathematics-lit-stub
dbo:abstract
Introduction to Commutative Algebra is a well-known commutative algebra textbook written by Michael Atiyah and Ian G. Macdonald. It deals with elementary concepts of commutative algebra including localization, primary decomposition, integral dependence, Noetherian and Artinian rings and modules, Dedekind rings, completions and a moderate amount of dimension theory. It is notable for being among the shorter English-language introductory textbooks in the subject, relegating a good deal of material to the exercises. (Hardcover 1969, ISBN 0-201-00361-9) (Paperback 1994, ISBN 0-201-40751-5) * v * t * e
gold:hypernym
dbr:Textbook
prov:wasDerivedFrom
wikipedia-en:Introduction_to_Commutative_Algebra?oldid=927667458&ns=0
dbo:wikiPageLength
989
foaf:isPrimaryTopicOf
wikipedia-en:Introduction_to_Commutative_Algebra
Subject Item
dbr:Commutative_algebra
dbo:wikiPageWikiLink
dbr:Introduction_to_Commutative_Algebra
Subject Item
dbr:Ideal_(ring_theory)
dbo:wikiPageWikiLink
dbr:Introduction_to_Commutative_Algebra
Subject Item
dbr:Ascending_chain_condition
dbo:wikiPageWikiLink
dbr:Introduction_to_Commutative_Algebra
Subject Item
dbr:Introduction_to_commutative_algebra
dbo:wikiPageWikiLink
dbr:Introduction_to_Commutative_Algebra
dbo:wikiPageRedirects
dbr:Introduction_to_Commutative_Algebra
Subject Item
wikipedia-en:Introduction_to_Commutative_Algebra
foaf:primaryTopic
dbr:Introduction_to_Commutative_Algebra