This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
n13https://books.google.de/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n22http://dbpedia.org/resource/File:
n11http://ta.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
n8https://global.dbpedia.org/id/
dbpedia-trhttp://tr.dbpedia.org/resource/
n20https://proofwiki.org/wiki/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n14http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n10http://www.cut-the-knot.org/pythagoras/

Statements

Subject Item
dbr:Intersecting_chords_theorem
dbo:wikiPageWikiLink
dbr:Intersecting_secants_theorem
Subject Item
dbr:Intersecting_secants_theorem
rdfs:label
Intersecting secants theorem Sekantensatz Teorema de las secantes
rdfs:comment
Der Sekantensatz besagt: Schneiden sich zwei Sekanten außerhalb des Kreises in einem Punkt , so ist das Produkt der Abschnittslängen vom Sekantenschnittpunkt bis zu den beiden Schnittpunkten von Kreis und Sekante auf beiden Sekanten gleich groß. Kürzer: Das Produkt der Sekantenabschnitte ist konstant. The intersecting secant theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle. For two lines AD and BC that intersect each other in P and some circle in A and D respective B and C the following equation holds: The theorem follows directly from the fact, that the triangles PAC and PBD are similar. They share and as they are inscribed angles over AB. The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above:
foaf:depiction
n14:Secant_theorem.svg
dcterms:subject
dbc:Theorems_about_circles
dbo:wikiPageID
19359084
dbo:wikiPageRevisionID
1029543499
dbo:wikiPageWikiLink
dbr:Power_of_a_point dbr:Tangent-secant_theorem dbr:Inscribed_angle dbc:Theorems_about_circles dbr:Intersecting_chords_theorem n22:Secant_theorem.svg
dbo:wikiPageExternalLink
n10:PPower.shtml n13:books%3Fid=1jH7CAAAQBAJ&pg=PA175 n13:books%3Fid=Ch5CrMtyniEC&pg=PA161 n20:Secant_Secant_Theorem
owl:sameAs
n8:gZSA wikidata:Q1727461 n11:வெட்டும்_வெட்டுக்கோடுகள்_தேற்றம் dbpedia-tr:Kesişen_kesenler_teoremi dbpedia-es:Teorema_de_las_secantes dbpedia-de:Sekantensatz
dbp:wikiPageUsesTemplate
dbt:Center dbt:MathWorld dbt:Short_description dbt:ISBN dbt:Ancient_Greek_mathematics
dbo:thumbnail
n14:Secant_theorem.svg?width=300
dbp:title
Chord
dbp:urlname
Chord
dbo:abstract
The intersecting secant theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle. For two lines AD and BC that intersect each other in P and some circle in A and D respective B and C the following equation holds: The theorem follows directly from the fact, that the triangles PAC and PBD are similar. They share and as they are inscribed angles over AB. The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above: Next to the intersecting chords theorem and the tangent-secant theorem the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem. Der Sekantensatz besagt: Schneiden sich zwei Sekanten außerhalb des Kreises in einem Punkt , so ist das Produkt der Abschnittslängen vom Sekantenschnittpunkt bis zu den beiden Schnittpunkten von Kreis und Sekante auf beiden Sekanten gleich groß. Kürzer: Das Produkt der Sekantenabschnitte ist konstant.
prov:wasDerivedFrom
wikipedia-en:Intersecting_secants_theorem?oldid=1029543499&ns=0
dbo:wikiPageLength
2170
foaf:isPrimaryTopicOf
wikipedia-en:Intersecting_secants_theorem
Subject Item
dbr:Power_of_a_point
dbo:wikiPageWikiLink
dbr:Intersecting_secants_theorem
Subject Item
dbr:Secant_line
dbo:wikiPageWikiLink
dbr:Intersecting_secants_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Intersecting_secants_theorem
Subject Item
dbr:Plücker_coordinates
dbo:wikiPageWikiLink
dbr:Intersecting_secants_theorem
Subject Item
dbr:Tangent-secant_theorem
dbo:wikiPageWikiLink
dbr:Intersecting_secants_theorem
Subject Item
wikipedia-en:Intersecting_secants_theorem
foaf:primaryTopic
dbr:Intersecting_secants_theorem