This HTML5 document contains 52 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10http://dbpedia.org/resource/Wiktionary:
n7https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_set_identities_and_relations
dbo:wikiPageWikiLink
dbr:Inhabited_set
Subject Item
dbr:Inhabited_set
rdfs:label
Inhabited set
rdfs:comment
In constructive mathematics, a set is inhabited if there exists an element In classical mathematics, this is the same as the set being nonempty; however, this equivalence is not valid in intuitionistic logic (or constructive logic).
dcterms:subject
dbc:Concepts_in_logic dbc:Basic_concepts_in_set_theory dbc:Constructivism_(mathematics) dbc:Mathematical_objects dbc:Set_theory
dbo:wikiPageID
5473033
dbo:wikiPageRevisionID
1062680530
dbo:wikiPageWikiLink
dbr:Existential_quantifier dbr:Set_(mathematics) dbr:Nonempty dbr:Subset n10:inhabitant n10:inhabited dbc:Concepts_in_logic dbr:Riemann_hypothesis dbr:Structure_(mathematical_logic) dbr:Axiom_of_specification dbr:Kripke_model dbr:Constructive_mathematics dbc:Set_theory dbc:Constructivism_(mathematics) dbc:Basic_concepts_in_set_theory dbr:Classical_logic dbr:Empty_set dbr:Classical_mathematics dbc:Mathematical_objects dbr:Intuitionistic_logic dbr:Well-formed_formula
owl:sameAs
n7:4n7y5 wikidata:Q6033616 freebase:m.0dnf9r
dbp:wikiPageUsesTemplate
dbt:PlanetMath_attribution dbt:Isbn dbt:Short_description dbt:Reflist dbt:Mathematical_logic dbt:Annotated_link dbt:Em
dbp:id
5931
dbp:title
Inhabited set
dbo:abstract
In constructive mathematics, a set is inhabited if there exists an element In classical mathematics, this is the same as the set being nonempty; however, this equivalence is not valid in intuitionistic logic (or constructive logic).
prov:wasDerivedFrom
wikipedia-en:Inhabited_set?oldid=1062680530&ns=0
dbo:wikiPageLength
3857
foaf:isPrimaryTopicOf
wikipedia-en:Inhabited_set
Subject Item
dbr:Intuitionistic_logic
dbo:wikiPageWikiLink
dbr:Inhabited_set
Subject Item
dbr:Intersection_(set_theory)
dbo:wikiPageWikiLink
dbr:Inhabited_set
Subject Item
dbr:Axiom_of_regularity
dbo:wikiPageWikiLink
dbr:Inhabited_set
Subject Item
dbr:List_of_types_of_sets
dbo:wikiPageWikiLink
dbr:Inhabited_set
Subject Item
wikipedia-en:Inhabited_set
foaf:primaryTopic
dbr:Inhabited_set