This HTML5 document contains 86 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n18http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n17http://commons.wikimedia.org/wiki/Special:FilePath/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n8http://numericaltank.sjtu.edu.cn/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Duffing_equation
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
Subject Item
dbr:Index_of_physics_articles_(H)
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
Subject Item
dbr:Liao_Shijun
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
Subject Item
dbr:Partial_differential_equation
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
Subject Item
dbr:Ham_(disambiguation)
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
dbo:wikiPageDisambiguates
dbr:Homotopy_analysis_method
Subject Item
dbr:Adomian_decomposition_method
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
Subject Item
dbr:Homotopy
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
Subject Item
dbr:Homotopy_analysis_method
rdf:type
yago:WikicatPartialDifferentialEquations yago:Equation106669864 dbo:TopicalConcept yago:Communication100033020 yago:MathematicalStatement106732169 yago:Statement106722453 yago:PartialDifferentialEquation106670866 yago:DifferentialEquation106670521 yago:Abstraction100002137 yago:Message106598915
rdfs:label
Homotopy analysis method
rdfs:comment
The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-Maclaurin series to deal with the nonlinearities in the system.
foaf:depiction
n17:Mug_and_Torus_morph.gif n17:HomotopySmall.gif
dct:subject
dbc:Asymptotic_analysis dbc:Partial_differential_equations dbc:Homotopy_theory
dbo:wikiPageID
22844401
dbo:wikiPageRevisionID
1117735594
dbo:wikiPageWikiLink
dbr:Numerical_continuation dbr:Perturbation_theory dbr:Shanghai_Jiaotong_University dbr:Stochastic_volatility dbc:Asymptotic_analysis dbr:Basis_functions dbr:Padé_approximant dbr:Electrohydrodynamic dbr:Mathematica dbc:Partial_differential_equations n18:HomotopySmall.gif dbr:Homotopy dbr:Liao_Shijun dbr:Spectral_methods dbr:Put_option n18:Mug_and_Torus_morph.gif dbr:Adomian_decomposition_method dbr:Linear_operator dbr:Limit_of_a_sequence dbr:Poisson–Boltzmann_equation dbr:Taylor_series dbr:Limit_cycle dbr:Series_(mathematics) dbr:Topology dbr:Partial_differential_equation dbr:Aleksandr_Lyapunov dbr:Partial_differential_equations dbr:Boundary_element_method dbr:Maple_(software) dbc:Homotopy_theory dbr:Ordinary_differential_equations dbr:Heat_transfer dbr:Nonlinear dbr:Gravity_waves dbr:Wave_resonance dbr:Differential_equations dbr:Homotopy_perturbation_method dbr:Navier–Stokes_equation dbr:Mathematical_analysis
dbo:wikiPageExternalLink
n8:BVPh.htm n8:APO.htm
owl:sameAs
freebase:m.06425g1 wikidata:Q17030668 yago-res:Homotopy_analysis_method n15:fBLk dbpedia-fa:روش_تحلیل_هموتوپی
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Like_resume
dbo:thumbnail
n17:HomotopySmall.gif?width=300
dbo:abstract
The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-Maclaurin series to deal with the nonlinearities in the system. The HAM was first devised in 1992 by Liao Shijun of Shanghai Jiaotong University in his PhD dissertation and further modified in 1997 to introduce a non-zero auxiliary parameter, referred to as the convergence-control parameter, c0, to construct a homotopy on a differential system in general form. The convergence-control parameter is a non-physical variable that provides a simple way to verify and enforce convergence of a solution series. The capability of the HAM to naturally show convergence of the series solution is unusual in analytical and semi-analytic approaches to nonlinear partial differential equations.
gold:hypernym
dbr:Technique
prov:wasDerivedFrom
wikipedia-en:Homotopy_analysis_method?oldid=1117735594&ns=0
dbo:wikiPageLength
16560
foaf:isPrimaryTopicOf
wikipedia-en:Homotopy_analysis_method
Subject Item
dbr:Homotopy_perturbation_method
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
dbo:wikiPageRedirects
dbr:Homotopy_analysis_method
Subject Item
dbr:Homotopy_perturbation_technique
dbo:wikiPageWikiLink
dbr:Homotopy_analysis_method
dbo:wikiPageRedirects
dbr:Homotopy_analysis_method
Subject Item
wikipedia-en:Homotopy_analysis_method
foaf:primaryTopic
dbr:Homotopy_analysis_method