This HTML5 document contains 58 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Generalized_linear_mixed_model
dbo:wikiPageWikiLink
dbr:Hierarchical_generalized_linear_model
Subject Item
dbr:Hierarchical_generalized_linear_model
rdf:type
yago:LivingThing100004258 yago:Person100007846 yago:WikicatStatisticalModels yago:Worker109632518 yago:WikicatGeneralizedLinearModels yago:Object100002684 yago:Model110324560 yago:Whole100003553 yago:PhysicalEntity100001930 yago:YagoLegalActor yago:YagoLegalActorGeo yago:Organism100004475 yago:Assistant109815790 yago:CausalAgent100007347
rdfs:label
分层广义线性模型 Hierarchical generalized linear model
rdfs:comment
In statistics, hierarchical generalized linear models extend generalized linear models by relaxing the assumption that error components are independent. This allows models to be built in situations where more than one error term is necessary and also allows for dependencies between error terms. The error components can be correlated and not necessarily follow a normal distribution. When there are different clusters, that is, groups of observations, the observations in the same cluster are correlated. In fact, they are positively correlated because observations in the same cluster share some common features. In this situation, using generalized linear models and ignoring the correlations may cause problems. 在统计学中,分层广义线性模型(hierarchical generalized linear models (HGLM))可视为广义线性模型的推广。在广义线性模型中,误差分量是统计独立的, 然而这一假设并非总是成立的。即在有些情况下,误差项之间有函数关系。分层广义线性模型允许有不同的误差分量,误差分量可以统计相關的,并不必要满足正态分布。当有不同的聚类存在时,同一聚类中的观测值是相关的,并且是正相关的。在这种情况下,广义线性模型是不适用的,忽略这些关联会引起造成一些问题 。
dcterms:subject
dbc:Regression_models dbc:Generalized_linear_models
dbo:wikiPageID
38265760
dbo:wikiPageRevisionID
988681077
dbo:wikiPageWikiLink
dbr:Multiplicative_inverse dbr:Independence_(probability_theory) dbr:Binomial_distribution dbc:Regression_models dbr:Correlation_and_dependence dbr:Identifiability dbr:Semiconductor_fabrication dbr:Identity_function dbr:Normal_distribution dbr:Market_research dbr:Beta_distribution dbr:Statistics dbr:Natural_logarithm dbr:Inverse-gamma_distribution dbr:Logit dbr:Poisson_distribution dbr:Generalized_linear_mixed_model dbr:Generalized_linear_model dbr:Errors_and_residuals_in_statistics dbr:Gamma_distribution dbr:Monotone_function dbr:Generalized_linear_models dbc:Generalized_linear_models
owl:sameAs
n13:4mXZh freebase:m.0q3zgwy dbpedia-zh:分层广义线性模型 yago-res:Hierarchical_generalized_linear_model wikidata:Q5753099
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In statistics, hierarchical generalized linear models extend generalized linear models by relaxing the assumption that error components are independent. This allows models to be built in situations where more than one error term is necessary and also allows for dependencies between error terms. The error components can be correlated and not necessarily follow a normal distribution. When there are different clusters, that is, groups of observations, the observations in the same cluster are correlated. In fact, they are positively correlated because observations in the same cluster share some common features. In this situation, using generalized linear models and ignoring the correlations may cause problems. 在统计学中,分层广义线性模型(hierarchical generalized linear models (HGLM))可视为广义线性模型的推广。在广义线性模型中,误差分量是统计独立的, 然而这一假设并非总是成立的。即在有些情况下,误差项之间有函数关系。分层广义线性模型允许有不同的误差分量,误差分量可以统计相關的,并不必要满足正态分布。当有不同的聚类存在时,同一聚类中的观测值是相关的,并且是正相关的。在这种情况下,广义线性模型是不适用的,忽略这些关联会引起造成一些问题 。
prov:wasDerivedFrom
wikipedia-en:Hierarchical_generalized_linear_model?oldid=988681077&ns=0
dbo:wikiPageLength
9655
foaf:isPrimaryTopicOf
wikipedia-en:Hierarchical_generalized_linear_model
Subject Item
wikipedia-en:Hierarchical_generalized_linear_model
foaf:primaryTopic
dbr:Hierarchical_generalized_linear_model