This HTML5 document contains 77 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
n24http://www.numdam.org/
dbthttp://dbpedia.org/resource/Template:
n15http://www.renyi.hu/%7Epetz/pdf/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n12http://terrytao.wordpress.com/2010/07/15/the-golden-thompson-inequality/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n17http://bs.dbpedia.org/resource/
dbpedia-vihttp://vi.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n22http://www.numdam.org/item/RCP25_1973__19__A4_0/

Statements

Subject Item
dbr:List_of_inequalities
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
Subject Item
dbr:Matrix_exponential
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
Subject Item
dbr:Matrix_Chernoff_bound
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
Subject Item
dbr:Baker–Campbell–Hausdorff_formula
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
Subject Item
dbr:Trace_(linear_algebra)
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
Subject Item
dbr:Golden–Thompson_inequality
rdf:type
yago:Quality104723816 yago:Inequality104752221 yago:Abstraction100002137 yago:Attribute100024264 yago:Difference104748836 yago:WikicatInequalities
rdfs:label
골든-톰슨 부등식 Golden–Thompson inequality 高登─湯普森不等式
rdfs:comment
In physics and mathematics, the Golden–Thompson inequality is a trace inequality between exponentials of symmetric and Hermitian matrices proved independently by and . It has been developed in the context of statistical mechanics, where it has come to have a particular significance. 골든-톰슨 부등식(Golden-Thompson inequality, -不等式)은 시드니 골든(Sidney Golden)과 콜린 톰슨(Collin J. Thompson)의 이름이 붙은 선형대수학의 부등식으로, 다음과 같은 형태이다. A와 B가 에르미트 행렬일 경우 부등식이 항상 성립한다. 여기서 tr은 대각합을 뜻하며, 와 같은 표현은 행렬 지수 함수를 뜻한다. 만약 AB = BA이면 양 변에서 tr 안쪽의 두 행렬이 같아지므로 부등식의 등호가 성립하게 된다. 在物理學和數學上,高登─湯普森不等式(Golden–Thompson inequality)是一個由)和)二氏所證明的不等式,該不等式的定義如下: 若和是埃尔米特矩阵,則以下不等式成立: 其中指的是矩陣的跡,而則是矩阵指数。此不等式在统计力学上相當重要,而此不等式一開始也是由此而生的。 貝多蘭‧康斯坦多(Bertram Kostant)在1973年利用(Kostant convexity theorem)將此不等式推廣到所有的緊緻李群(compact Lie group)之上。
dcterms:subject
dbc:Matrix_theory dbc:Linear_algebra dbc:Inequalities
dbo:wikiPageID
7999138
dbo:wikiPageRevisionID
1082658695
dbo:wikiPageWikiLink
dbr:Matrix_exponential dbr:Statistical_mechanics dbr:Exponential_function dbr:Unitarily_invariant_norm dbc:Inequalities dbr:Journal_of_Mathematical_Physics dbr:Springer-Verlag dbr:Physics dbr:Trace_inequalities dbr:Definite_matrix dbr:Trace_(linear_algebra) dbr:Commuting_matrices dbr:Kostant_convexity_theorem dbr:Trace_inequality dbr:Advances_in_Mathematics dbr:Hermitian_matrix dbc:Matrix_theory dbr:Mathematics dbc:Linear_algebra dbr:Schatten_norm
dbo:wikiPageExternalLink
n12:%7Cyear=2010%7Ctitle=The n15:64.pdf n22: n24:item%3Fid=ASENS_1973_4_6_4_413_0
owl:sameAs
dbpedia-vi:Bất_đẳng_thức_Golden–Thompson dbpedia-zh:高登─湯普森不等式 n17:Golden-Thompsonova_nejednakost n18:8htX dbpedia-ko:골든-톰슨_부등식 wikidata:Q1058622 freebase:m.026m_dv
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Harvs dbt:Cite_journal dbt:Harvtxt
dbp:authorlink
Bertram Kostant
dbp:first
Bertram
dbp:last
Kostant
dbp:year
1973
dbo:abstract
In physics and mathematics, the Golden–Thompson inequality is a trace inequality between exponentials of symmetric and Hermitian matrices proved independently by and . It has been developed in the context of statistical mechanics, where it has come to have a particular significance. 골든-톰슨 부등식(Golden-Thompson inequality, -不等式)은 시드니 골든(Sidney Golden)과 콜린 톰슨(Collin J. Thompson)의 이름이 붙은 선형대수학의 부등식으로, 다음과 같은 형태이다. A와 B가 에르미트 행렬일 경우 부등식이 항상 성립한다. 여기서 tr은 대각합을 뜻하며, 와 같은 표현은 행렬 지수 함수를 뜻한다. 만약 AB = BA이면 양 변에서 tr 안쪽의 두 행렬이 같아지므로 부등식의 등호가 성립하게 된다. 在物理學和數學上,高登─湯普森不等式(Golden–Thompson inequality)是一個由)和)二氏所證明的不等式,該不等式的定義如下: 若和是埃尔米特矩阵,則以下不等式成立: 其中指的是矩陣的跡,而則是矩阵指数。此不等式在统计力学上相當重要,而此不等式一開始也是由此而生的。 貝多蘭‧康斯坦多(Bertram Kostant)在1973年利用(Kostant convexity theorem)將此不等式推廣到所有的緊緻李群(compact Lie group)之上。
prov:wasDerivedFrom
wikipedia-en:Golden–Thompson_inequality?oldid=1082658695&ns=0
dbo:wikiPageLength
6664
foaf:isPrimaryTopicOf
wikipedia-en:Golden–Thompson_inequality
Subject Item
dbr:Kostant's_convexity_theorem
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
Subject Item
dbr:Golden-Thompson_inequality
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
dbo:wikiPageRedirects
dbr:Golden–Thompson_inequality
Subject Item
dbr:Golden-Thompson
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
dbo:wikiPageRedirects
dbr:Golden–Thompson_inequality
Subject Item
dbr:Golden_Thompson
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
dbo:wikiPageRedirects
dbr:Golden–Thompson_inequality
Subject Item
dbr:Golden_Thompson_inequality
dbo:wikiPageWikiLink
dbr:Golden–Thompson_inequality
dbo:wikiPageRedirects
dbr:Golden–Thompson_inequality
Subject Item
wikipedia-en:Golden–Thompson_inequality
foaf:primaryTopic
dbr:Golden–Thompson_inequality