This HTML5 document contains 69 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n5https://global.dbpedia.org/id/
dchttp://purl.org/dc/elements/1.1/
schemahttp://schema.org/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
bibohttp://purl.org/ontology/bibo/
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n19https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:David_Hilbert
dbo:wikiPageWikiLink
dbr:Geometry_and_the_Imagination
Subject Item
dbr:Geometry_and_the_Imagination
rdf:type
schema:Book wikidata:Q386724 schema:CreativeWork dbo:WrittenWork wikidata:Q234460 bibo:Book wikidata:Q571 owl:Thing dbo:Book dbo:Work
rdfs:label
Geometry and the Imagination
rdfs:comment
Geometry and the Imagination is the English translation of the 1932 book Anschauliche Geometrie by David Hilbert and Stefan Cohn-Vossen. The book was based on a series of lectures Hilbert made in the winter of 1920–21. The book is an attempt to present some then-current mathematical thought to "contribute to a more just appreciation of mathematics by a wider range of people than just the specialists." It differentiates between two tendencies in mathematics and any other scientific research: on the one hand, toward abstraction and logical relations, correlating the subject matter in a systematic and orderly manner, and on the other hand an intuitive approach, which moves toward a more immediate grasp of and a "live rapport" with the same material. Further he asserts that intuitive understan
foaf:name
Anschauliche Geometrie Geometry and the Imagination
dbp:name
Geometry and the Imagination
foaf:depiction
n11:Geometry_and_the_Imagination.jpg
dc:publisher
Chelsea Publishing(American Mathematical Society)
dcterms:subject
dbc:1932_non-fiction_books dbc:1952_non-fiction_books dbc:Books_about_mathematics
dbo:wikiPageID
55419796
dbo:wikiPageRevisionID
1062161219
dbo:wikiPageWikiLink
dbr:Internet_Archive dbr:The_Scientific_Monthly dbr:Non-Euclidean_geometry dbr:Linkage_(mechanical) dbr:Leibniz_formula_for_π dbr:Curvature dbc:1932_non-fiction_books dbr:Manifold dbc:Books_about_mathematics dbc:1952_non-fiction_books dbr:Configuration_(geometry) dbr:American_Mathematical_Society dbr:Mathematical_Association_of_America dbr:Stefan_Cohn-Vossen dbr:Four_color_theorem dbr:Euler_characteristic dbr:Paul_Nemenyi dbr:David_Hilbert dbr:Physics_Today dbr:Chelsea_Publishing
dbo:wikiPageExternalLink
n19:geometryimaginat00davi_0
owl:sameAs
n5:46o4S wikidata:Q44275646
dbp:wikiPageUsesTemplate
dbt:Pi dbt:Reflist dbt:Infobox_book
dbo:thumbnail
n11:Geometry_and_the_Imagination.jpg?width=300
dbp:isbn
9780821819982
dbp:oclc
542459
dbp:pages
357
dbp:pubDate
1952
dbp:publisher
Chelsea Publishing
dbp:titleOrig
Anschauliche Geometrie
dbp:translator
dbr:Paul_Nemenyi
dbo:abstract
Geometry and the Imagination is the English translation of the 1932 book Anschauliche Geometrie by David Hilbert and Stefan Cohn-Vossen. The book was based on a series of lectures Hilbert made in the winter of 1920–21. The book is an attempt to present some then-current mathematical thought to "contribute to a more just appreciation of mathematics by a wider range of people than just the specialists." It differentiates between two tendencies in mathematics and any other scientific research: on the one hand, toward abstraction and logical relations, correlating the subject matter in a systematic and orderly manner, and on the other hand an intuitive approach, which moves toward a more immediate grasp of and a "live rapport" with the same material. Further he asserts that intuitive understanding actually plays a major role for the researcher as well as anyone who wishes to study and appreciate Geometry.
prov:wasDerivedFrom
wikipedia-en:Geometry_and_the_Imagination?oldid=1062161219&ns=0
dbo:wikiPageLength
4211
dbo:isbn
9780821819982
dbo:numberOfPages
357
dbo:oclc
542459
dbo:publisher
dbr:Chelsea_Publishing
dbo:translator
dbr:Paul_Nemenyi
foaf:isPrimaryTopicOf
wikipedia-en:Geometry_and_the_Imagination
Subject Item
dbr:Confocal_conic_sections
dbo:wikiPageWikiLink
dbr:Geometry_and_the_Imagination
Subject Item
dbr:Stefan_Cohn-Vossen
dbo:wikiPageWikiLink
dbr:Geometry_and_the_Imagination
Subject Item
wikipedia-en:Geometry_and_the_Imagination
foaf:primaryTopic
dbr:Geometry_and_the_Imagination