This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Canonical_transformation
dbo:wikiPageWikiLink
dbr:Generating_function_(physics)
Subject Item
dbr:Index_of_physics_articles_(G)
dbo:wikiPageWikiLink
dbr:Generating_function_(physics)
Subject Item
dbr:Analytical_mechanics
dbo:wikiPageWikiLink
dbr:Generating_function_(physics)
Subject Item
dbr:Generating_function_(physics)
rdfs:label
Generating function (physics) 正則變換生成函數 모함수 (물리학)
rdfs:comment
在哈密頓力學裏,當計算正則變換時,生成函數扮演的角色,好似在兩組正則坐標 , 之間的一座橋。為了要保證正則變換的正確性 ,採取一種間接的方法,稱為生成函數方法。這兩組變數必須符合方程式 ;(1) 其中, 是舊廣義坐標, 是舊廣義動量, 是新廣義坐標, 是新廣義動量, 分別為舊哈密頓量與新哈密頓量, 是生成函數, 是時間。 生成函數 的參數,除了時間以外,一半是舊的正則坐標;另一半是新的正則坐標。視選擇出來不同的變數而定,一共有四種基本的生成函數。每一種基本生成函數設定一種不同的變換,從舊的一組正則坐標變換為新的一組正則坐標。這變換 保證是正則變換。 ( 이 문서는 해밀턴 역학에서 좌표 변환에 쓰이는 함수에 관한 것입니다. 조합론에서 쓰이는 생성함수(generating function)에 대해서는 생성함수 (수학) 문서를 참고하십시오.) 해밀턴 역학에서 모함수(母函數, generating function)는 두 개의 일반화 좌표간의 정준변환을 연결해주는 함수이다. In physics, and more specifically in Hamiltonian mechanics, a generating function is, loosely, a function whose partial derivatives generate the differential equations that determine a system's dynamics. Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation.
dct:subject
dbc:Classical_mechanics dbc:Hamiltonian_mechanics
dbo:wikiPageID
7952767
dbo:wikiPageRevisionID
1088908012
dbo:wikiPageWikiLink
dbr:Canonical_transformation dbr:Poisson_bracket dbr:Partition_function_(statistical_mechanics) dbr:Hamilton–Jacobi_equation dbc:Classical_mechanics dbr:Harmonic_oscillator dbr:Hamiltonian_mechanics dbc:Hamiltonian_mechanics
owl:sameAs
dbpedia-zh:正則變換生成函數 wikidata:Q845581 dbpedia-ko:모함수_(물리학) n12:4znpv freebase:m.026l8cn
dbp:wikiPageUsesTemplate
dbt:Cite_book dbt:Short_description dbt:About dbt:EquationRef dbt:EquationNote dbt:Reflist dbt:NumBlk
dbo:abstract
In physics, and more specifically in Hamiltonian mechanics, a generating function is, loosely, a function whose partial derivatives generate the differential equations that determine a system's dynamics. Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation. ( 이 문서는 해밀턴 역학에서 좌표 변환에 쓰이는 함수에 관한 것입니다. 조합론에서 쓰이는 생성함수(generating function)에 대해서는 생성함수 (수학) 문서를 참고하십시오.) 해밀턴 역학에서 모함수(母函數, generating function)는 두 개의 일반화 좌표간의 정준변환을 연결해주는 함수이다. 在哈密頓力學裏,當計算正則變換時,生成函數扮演的角色,好似在兩組正則坐標 , 之間的一座橋。為了要保證正則變換的正確性 ,採取一種間接的方法,稱為生成函數方法。這兩組變數必須符合方程式 ;(1) 其中, 是舊廣義坐標, 是舊廣義動量, 是新廣義坐標, 是新廣義動量, 分別為舊哈密頓量與新哈密頓量, 是生成函數, 是時間。 生成函數 的參數,除了時間以外,一半是舊的正則坐標;另一半是新的正則坐標。視選擇出來不同的變數而定,一共有四種基本的生成函數。每一種基本生成函數設定一種不同的變換,從舊的一組正則坐標變換為新的一組正則坐標。這變換 保證是正則變換。
prov:wasDerivedFrom
wikipedia-en:Generating_function_(physics)?oldid=1088908012&ns=0
dbo:wikiPageLength
3608
foaf:isPrimaryTopicOf
wikipedia-en:Generating_function_(physics)
Subject Item
dbr:Hamilton–Jacobi_equation
dbo:wikiPageWikiLink
dbr:Generating_function_(physics)
Subject Item
dbr:Generate
dbo:wikiPageWikiLink
dbr:Generating_function_(physics)
Subject Item
wikipedia-en:Generating_function_(physics)
foaf:primaryTopic
dbr:Generating_function_(physics)