This HTML5 document contains 63 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n12http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n4http://anson.ucdavis.edu/~mueller/data/
freebasehttp://rdf.freebase.com/ns/
n9http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Generalized_functional_linear_model
rdfs:label
Generalized functional linear model
rdfs:comment
The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types (continuous or discrete) on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of
foaf:depiction
n9:Egg_Laying_Trajectories_of_Medflies.png
dcterms:subject
dbc:Generalized_linear_models
dbo:wikiPageID
45589823
dbo:wikiPageRevisionID
975446148
dbo:wikiPageWikiLink
dbr:B-spline dbr:Square-integrable_function dbr:Akaike_information_criterion dbr:Probit dbr:Basis_function dbr:Backfitting_algorithm dbr:Cross-validation_(statistics) dbr:Poisson_distribution dbc:Generalized_linear_models dbr:Fourier_series dbr:Exponential_family dbr:Quasi-likelihood dbr:Generalized_linear_model dbr:Functional_additive_models n12:Egg_Laying_Trajectories_of_Medflies.png dbr:Estimating_equations dbr:Newton's_method dbr:Bernoulli_distribution dbr:Normal_distribution dbr:Variance_function dbr:Generalized_additive_model dbr:Orthonormality dbr:Stochastic_processes dbr:Functional_data_analysis dbr:Lp_space dbr:Cauchy–Schwarz_inequality dbr:Karhunen–Loève_theorem dbr:Smoothing dbr:Iteratively_reweighted_least_squares dbr:Dimensionality_reduction dbr:Confidence_intervals dbr:Score_(statistics) dbr:Scoring_algorithm dbr:Functional_principal_component_analysis dbr:Stochastic_process dbr:Logit dbr:Hilbert_space
dbo:wikiPageExternalLink
n4:medfly1000.html n4:medfly1000.txt
owl:sameAs
freebase:m.0130x41p wikidata:Q25303822 yago-res:Generalized_functional_linear_model n17:2NuKG
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Short_description dbt:Div_col dbt:Div_col_end
dbo:thumbnail
n9:Egg_Laying_Trajectories_of_Medflies.png?width=300
dbo:abstract
The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types (continuous or discrete) on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.
prov:wasDerivedFrom
wikipedia-en:Generalized_functional_linear_model?oldid=975446148&ns=0
dbo:wikiPageLength
15751
foaf:isPrimaryTopicOf
wikipedia-en:Generalized_functional_linear_model
Subject Item
dbr:Functional_correlation
dbo:wikiPageWikiLink
dbr:Generalized_functional_linear_model
Subject Item
dbr:Functional_data_analysis
dbo:wikiPageWikiLink
dbr:Generalized_functional_linear_model
Subject Item
dbr:Functional_regression
dbo:wikiPageWikiLink
dbr:Generalized_functional_linear_model
Subject Item
dbr:Functional_additive_models
dbo:wikiPageWikiLink
dbr:Generalized_functional_linear_model
Subject Item
wikipedia-en:Generalized_functional_linear_model
foaf:primaryTopic
dbr:Generalized_functional_linear_model