This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:GJMS_operator
rdf:type
yago:Relation100031921 yago:Function113783816 yago:Operator113786413 yago:Abstraction100002137 yago:WikicatDifferentialOperators yago:MathematicalRelation113783581
rdfs:label
GJMS operator
rdfs:comment
In the mathematical field of differential geometry, the GJMS operators are a family of differential operators, that are defined on a Riemannian manifold. In an appropriate sense, they depend only on the conformal structure of the manifold. The GJMS operators generalize the Paneitz operator and the conformal Laplacian. The initials GJMS are for its discoverers . Properly, the GJMS operator on a conformal manifold of dimension n is a conformally invariant operator between the line bundle of conformal densities of weight k − n/2 for k a positive integer
dct:subject
dbc:Conformal_geometry dbc:Differential_operators
dbo:wikiPageID
25525269
dbo:wikiPageRevisionID
984945249
dbo:wikiPageWikiLink
dbr:Symbol_of_a_differential_operator dbr:Ambient_construction dbr:Null_cone dbr:C._Robin_Graham dbr:Paneitz_operator dbr:Conformal_structure dbr:Mathematics dbr:Density_on_a_manifold dbr:Differential_operator dbc:Conformal_geometry dbr:Laplace–Beltrami_operator dbr:Line_bundle dbr:Volume_form dbr:Conformally_invariant dbr:Charles_Fefferman dbc:Differential_operators dbr:Cauchy_problem dbr:Riemannian_manifold dbr:Differential_geometry dbr:Laplace_operators_in_differential_geometry
owl:sameAs
n10:4jMtM freebase:m.09rsd2b yago-res:GJMS_operator wikidata:Q5513562
dbp:wikiPageUsesTemplate
dbt:Citation
dbo:abstract
In the mathematical field of differential geometry, the GJMS operators are a family of differential operators, that are defined on a Riemannian manifold. In an appropriate sense, they depend only on the conformal structure of the manifold. The GJMS operators generalize the Paneitz operator and the conformal Laplacian. The initials GJMS are for its discoverers . Properly, the GJMS operator on a conformal manifold of dimension n is a conformally invariant operator between the line bundle of conformal densities of weight k − n/2 for k a positive integer The operators have leading symbol given by a power of the Laplace–Beltrami operator, and have lower order correction terms that ensure conformal invariance. The original construction of the GJMS operators used the ambient construction of Charles Fefferman and Robin Graham. A conformal density defines, in a natural way, a function on the null cone in the ambient space. The GJMS operator is defined by taking density ƒ of the appropriate weight k − n/2 and extending it arbitrarily to a function F off the null cone so that it still retains the same homogeneity. The function ΔkF, where Δ is the ambient Laplace–Beltrami operator, is then homogeneous of degree −k − n/2, and its restriction to the null cone does not depend on how the original function ƒ was extended to begin with, and so is independent of choices. The GJMS operator also represents the obstruction term to a formal asymptotic solution of the Cauchy problem for extending a weight k − n/2 function off the null cone in the ambient space to a harmonic function in the full ambient space. The most important GJMS operators are the critical GJMS operators. In even dimension n, these are the operators Ln/2 that take a true function on the manifold and produce a multiple of the volume form.
prov:wasDerivedFrom
wikipedia-en:GJMS_operator?oldid=984945249&ns=0
dbo:wikiPageLength
2894
foaf:isPrimaryTopicOf
wikipedia-en:GJMS_operator
Subject Item
dbr:Ambient_construction
dbo:wikiPageWikiLink
dbr:GJMS_operator
Subject Item
dbr:Paneitz_operator
dbo:wikiPageWikiLink
dbr:GJMS_operator
Subject Item
dbr:C._Robin_Graham
dbo:wikiPageWikiLink
dbr:GJMS_operator
Subject Item
wikipedia-en:GJMS_operator
foaf:primaryTopic
dbr:GJMS_operator